Paul W Denny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4813864/publications.pdf

Version: 2024-02-01

62 papers

3,073 citations

218592 26 h-index 54 g-index

68 all docs

68
docs citations

68 times ranked 2679 citing authors

#	Article	IF	CITATIONS
1	Transcriptome-Wide Identification of Coding and Noncoding RNA-Binding Proteins Defines the Comprehensive RNA Interactome of Leishmania mexicana. Microbiology Spectrum, 2022, 10, e0242221.	1.2	8
2	Illuminating Host-Parasite Interaction at the Cellular and Subcellular Levels with Infrared Microspectroscopy. Cells, 2022, 11, 811.	1.8	1
3	Quantitative Proteomics Reveals that Hsp90 Inhibition Dynamically Regulates Global Protein Synthesis in Leishmania mexicana. MSystems, 2021, 6, .	1.7	10
4	Antileishmanial Chemotherapy through Clemastine Fumarate Mediated Inhibition of the <i>Leishmania</i> Inositol Phosphorylceramide Synthase. ACS Infectious Diseases, 2021, 7, 47-63.	1.8	15
5	The Histidine Ammonia Lyase of Trypanosoma cruzi Is Involved in Acidocalcisome Alkalinization and Is Essential for Survival under Starvation Conditions. MBio, 2021, , e0198121.	1.8	3
6	Chalcones identify cTXNPx as a potential antileishmanial drug target. PLoS Neglected Tropical Diseases, 2021, 15, e0009951.	1.3	15
7	Apoptotic blebs from Leishmania major-infected macrophages as a new approach for cutaneous leishmaniasis vaccination. Microbial Pathogenesis, 2020, 147, 104406.	1.3	2
8	An investigation of the antileishmanial properties of semi-synthetic saponins. RSC Medicinal Chemistry, 2020, $11,833-842$.	1.7	13
9	How can proteomics overhaul our understanding of Leishmania biology?. Expert Review of Proteomics, 2020, 17, 789-792.	1.3	2
10	Mining for natural product antileishmanials in a fungal extract library. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 11, 118-128.	1.4	10
11	Lytic reactions of drugs with lipid membranes. Chemical Science, 2019, 10, 674-680.	3.7	8
12	Expression levels of inositol phosphorylceramide synthase modulate plant responses to biotic and abiotic stress in Arabidopsis thaliana. PLoS ONE, 2019, 14, e0217087.	1.1	7
13	The identification of small molecule inhibitors of the plant inositol phosphorylceramide synthase which demonstrate herbicidal activity. Scientific Reports, 2019, 9, 8083.	1.6	7
14	A BONCAT-iTRAQ method enables temporally resolved quantitative profiling of newly synthesised proteins in Leishmania mexicana parasites during starvation. PLoS Neglected Tropical Diseases, 2019, 13, e0007651.	1.3	10
15	Identifying inhibitors of the Leishmania inositol phosphorylceramide synthase with antiprotozoal activity using a yeast-based assay and ultra-high throughput screening platform. Scientific Reports, 2018, 8, 3938.	1.6	26
16	Complex Interplay between Sphingolipid and Sterol Metabolism Revealed by Perturbations to the Leishmania Metabolome Caused by Miltefosine. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	31
17	Microbial protein targets: towards understanding and intervention. Parasitology, 2018, 145, 111-115.	0.7	2
18	The antifungal Aureobasidin A and an analogue are active against the protozoan parasite < i>Toxoplasma gondii < /i>but do not inhibit sphingolipid biosynthesis. Parasitology, 2018, 145, 148-155.	0.7	13

#	Article	IF	CITATIONS
19	Everybody needs sphingolipids, right! Mining for new drug targets in protozoan sphingolipid biosynthesis. Parasitology, 2018, 145, 134-147.	0.7	21
20	Repurposing as a strategy for the discovery of new anti-leishmanials: the-state-of-the-art. Parasitology, 2018, 145, 219-236.	0.7	81
21	Tamoxifen inhibits the biosynthesis of inositolphosphorylceramide in Leishmania. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 475-487.	1.4	12
22	Yeast: bridging the gap between phenotypic and biochemical assays for high-throughput screening. Expert Opinion on Drug Discovery, 2018, 13, 1153-1160.	2.5	16
23	Functional Analyses of a Putative, Membrane-Bound, Peroxisomal Protein Import Mechanism from the Apicomplexan Protozoan Toxoplasma gondii. Genes, 2018, 9, 434.	1.0	4
24	Functional and phylogenetic evidence of a bacterial origin for the first enzyme in sphingolipid biosynthesis in a phylum of eukaryotic protozoan parasites. Journal of Biological Chemistry, 2017, 292, 12208-12219.	1.6	20
25	An Efficient Method for the Synthesis of Peptoids with Mixed Lysine-type/Arginine-type Monomers and Evaluation of Their Anti-leishmanial Activity. Journal of Visualized Experiments, 2016, , .	0.2	6
26	Enlarging the chemical space of anti-leishmanials: a structure–activity relationship study of peptoids against Leishmania mexicana, a causative agent of cutaneous leishmaniasis. MedChemComm, 2016, 7, 799-805.	3.5	18
27	Crystal Structure of a Hidden Protein, YcaC, a Putative Cysteine Hydrolase from Pseudomonas aeruginosa, with and without an Acrylamide Adduct. International Journal of Molecular Sciences, 2015, 16, 15971-15984.	1.8	6
28	The Role of Phosphoglycans in the Susceptibility of Leishmania mexicana to the Temporin Family of Anti-Microbial Peptides. Molecules, 2015, 20, 2775-2785.	1.7	23
29	Yeast as a Potential Vehicle for Neglected Tropical Disease Drug Discovery. Journal of Biomolecular Screening, 2015, 20, 56-63.	2.6	22
30	Investigating the Antiâ€leishmanial Effects of Linear Peptoids. ChemMedChem, 2015, 10, 233-237.	1.6	27
31	The utility of yeast as a tool for cell-based, target-directed high-throughput screening. Parasitology, 2014, 141, 8-16.	0.7	27
32	Sphingolipid synthesis and scavenging in the intracellular apicomplexan parasite, Toxoplasma gondii. Molecular and Biochemical Parasitology, 2013, 187, 43-51.	0.5	39
33	Aqueous synthesis of N,S-dialkylthiophosphoramidates: design, optimisation and application to library construction and antileishmanial testing. Organic and Biomolecular Chemistry, 2013, 11, 2660.	1.5	6
34	Lipid Metabolism as a Therapeutic Target. Biochemistry Research International, 2012, 2012, 1-2.	1.5	3
35	Sphingolipid and Ceramide Homeostasis: Potential Therapeutic Targets. Biochemistry Research International, 2012, 2012, 1-12.	1.5	53
36	Endocytosis and Sphingolipid Scavenging in <i>Leishmania mexicana</i> Amastigotes. Biochemistry Research International, 2012, 2012, 1-8.	1.5	13

#	Article	IF	Citations
37	Exploring Leishmania major Inositol Phosphorylceramide Synthase (LmjIPCS): Insights into the ceramide binding domain. Organic and Biomolecular Chemistry, 2011, 9, 1823.	1.5	31
38	Studies on the antileishmanial properties of the antimicrobial peptides temporin A, B and 1Sa. Journal of Peptide Science, 2011, 17, 751-755.	0.8	30
39	Functional analyses of differentially expressed isoforms of the Arabidopsis inositol phosphorylceramide synthase. Plant Molecular Biology, 2010, 73, 399-407.	2.0	36
40	A plate-based assay system for analyses and screening of the Leishmania major inositol phosphorylceramide synthase. International Journal of Biochemistry and Cell Biology, 2010, 42, 1553-1561.	1.2	25
41	Antimicrobial peptides for leishmaniasis. Current Opinion in Investigational Drugs, 2010, 11, 868-75.	2.3	16
42	The Trypanosoma brucei sphingolipid synthase, an essential enzyme and drug target. Molecular and Biochemical Parasitology, 2009, 168, 16-23.	0.5	47
43	The Protozoan Inositol Phosphorylceramide Synthase. Journal of Biological Chemistry, 2006, 281, 28200-28209.	1.6	83
44	Leishmania major: clathrin and adaptin complexes of an intra-cellular parasite. Experimental Parasitology, 2005, 109, 33-37.	0.5	15
45	Direct transport across the plasma membrane of mammalian cells of Leishmania HASPB as revealed by a CHO export mutant. Journal of Cell Science, 2005, 118, 517-527.	1.2	46
46	An Evolutionarily Conserved Coiled-Coil Protein Implicated in Polycystic Kidney Disease Is Involved in Basal Body Duplication and Flagellar Biogenesis in Trypanosoma brucei. Molecular and Cellular Biology, 2005, 25, 3774-3783.	1.1	35
47	Sphingolipid-free Leishmania are defective in membrane trafficking, differentiation and infectivity. Molecular Microbiology, 2004, 52, 313-327.	1.2	90
48	Rafts and sphingolipid biosynthesis in the kinetoplastid parasitic protozoa. Molecular Microbiology, 2004, 53, 725-733.	1.2	45
49	Ether Phospholipids and Glycosylinositolphospholipids Are Not Required for Amastigote Virulence or for Inhibition of Macrophage Activation by Leishmania major. Journal of Biological Chemistry, 2003, 278, 44708-44718.	1.6	92
50	Leishmania RAB7: characterisation of terminal endocytic stages in an intracellular parasite. Molecular and Biochemical Parasitology, 2002, 123, 105-113.	0.5	27
51	The kinetoplastida endocytic apparatus. Part I: a dynamic system for nutrition and evasion of host defences. Trends in Parasitology, 2002, 18, 491-496.	1.5	73
52	The endocytic apparatus of the kinetoplastida. Part II: machinery and components of the system. Trends in Parasitology, 2002, 18, 540-546.	1.5	64
53	The in vivo conformation of the plastid DNA of Toxoplasma gondii: implications for replication11Edited by NH. Chua. Journal of Molecular Biology, 2001, 306, 159-168.	2.0	39
54	GPI-anchored proteins and glycoconjugates segregate into lipid rafts in Kinetoplastida. FEBS Letters, 2001, 491, 148-153.	1.3	89

#	Article	IF	CITATIONS
55	Phenotypic changes associated with deletion and overexpression of a stage-regulated gene family in Leishmania. Cellular Microbiology, 2001, 3, 511-523.	1.1	57
56	DRMs, secretion and lipid architecture in Trypanosomatidae. Biochemical Society Transactions, 2000, 28, A477-A477.	1.6	0
57	Expression of the AM gene locus in infective stages of Leishmania. Molecular and Biochemical Parasitology, 2000, 109, 73-79.	0.5	3
58	Acylation-dependent Protein Export inLeishmania. Journal of Biological Chemistry, 2000, 275, 11017-11025.	1.6	146
59	Evidence for a Single Origin of the 35 kb Plastid DNA in Apicomplexans. Protist, 1998, 149, 51-59.	0.6	56
60	Thiostrepton binds to malarial plastid rRNA. FEBS Letters, 1997, 406, 123-125.	1.3	83
61	A Plastid of Probable Green Algal Origin in Apicomplexan Parasites. Science, 1997, 275, 1485-1489.	6.0	726
62	Complete Gene Map of the Plastid-like DNA of the Malaria ParasitePlasmodium falciparum. Journal of Molecular Biology, 1996, 261, 155-172.	2.0	535