## Douglas R Kellogg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4813423/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Nutrient availability as an arbiter of cell size. Trends in Cell Biology, 2022, 32, 908-919.                                                                                                              | 3.6 | 13        |
| 2  | Growth-dependent signals drive an increase in early G1 cyclin concentration to link cell cycle entry with cell growth. ELife, 2021, 10, .                                                                 | 2.8 | 21        |
| 3  | Conserved Ark1-related kinases function in a TORC2 signaling network. Molecular Biology of the Cell, 2020, 31, 2057-2069.                                                                                 | 0.9 | 4         |
| 4  | Growth-Dependent Activation of Protein Kinases Suggests a Mechanism for Measuring Cell Growth.<br>Genetics, 2020, 215, 729-746.                                                                           | 1.2 | 10        |
| 5  | A Conserved PP2A Regulatory Subunit Enforces Proportional Relationships Between Cell Size and Growth Rate. Genetics, 2019, 213, 517-528.                                                                  | 1.2 | 8         |
| 6  | Cell Size and Growth Rate Are Modulated by TORC2-Dependent Signals. Current Biology, 2018, 28, 196-210.e4.                                                                                                | 1.8 | 44        |
| 7  | Modulation of TORC2 Signaling by a Conserved Lkb1 Signaling Axis in Budding Yeast. Genetics, 2018, 210, 155-170.                                                                                          | 1.2 | 17        |
| 8  | Wee1 and Cdc25 are controlled by conserved PP2A-dependent mechanisms in fission yeast. Cell Cycle, 2017, 16, 428-435.                                                                                     | 1.3 | 41        |
| 9  | Fatty Acid Availability Sets Cell Envelope Capacity and Dictates Microbial Cell Size. Current Biology, 2017, 27, 1757-1767.e5.                                                                            | 1.8 | 127       |
| 10 | Protein Kinase C Controls Binding of Igo/ENSA Proteins to Protein Phosphatase 2A in Budding Yeast.<br>Journal of Biological Chemistry, 2017, 292, 4925-4941.                                              | 1.6 | 13        |
| 11 | The duration of mitosis and daughter cell size are modulated by nutrients in budding yeast. Journal of<br>Cell Biology, 2017, 216, 3463-3470.                                                             | 2.3 | 57        |
| 12 | A conserved signaling network monitors delivery of sphingolipids to the plasma membrane in budding<br>yeast. Molecular Biology of the Cell, 2017, 28, 2589-2599.                                          | 0.9 | 28        |
| 13 | Nucleocytoplasmic transport in the midzone membrane domain controls yeast mitotic spindle disassembly. Journal of Cell Biology, 2015, 209, 387-402.                                                       | 2.3 | 18        |
| 14 | The Rts1 Regulatory Subunit of PP2A Phosphatase Controls Expression of the HO Endonuclease via<br>Localization of the Ace2 Transcription Factor. Journal of Biological Chemistry, 2014, 289, 35431-35437. | 1.6 | 11        |
| 15 | Compact Modeling of Allosteric Multisite Proteins: Application to a Cell Size Checkpoint. PLoS<br>Computational Biology, 2014, 10, e1003443.                                                              | 1.5 | 7         |
| 16 | PP2ARts1 is a master regulator of pathways that control cell size. Journal of Cell Biology, 2014, 204, 359-376.                                                                                           | 2.3 | 68        |
| 17 | Cdk1-dependent control of membrane-trafficking dynamics. Molecular Biology of the Cell, 2012, 23, 3336-3347.                                                                                              | 0.9 | 24        |
| 18 | A link between mitotic entry and membrane growth suggests a novel model for cell size control.<br>Journal of Cell Biology, 2012, 197, 89-104.                                                             | 2.3 | 60        |

Douglas R Kellogg

| #  | Article                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The Zds proteins control entry into mitosis and target protein phosphatase 2A to the Cdc25 phosphatase. Molecular Biology of the Cell, 2011, 22, 20-32.                          | 0.9  | 34        |
| 20 | A phosphatase threshold sets the level of Cdk1 activity in early mitosis in budding yeast. Molecular<br>Biology of the Cell, 2011, 22, 3595-3608.                                | 0.9  | 66        |
| 21 | The Rts1 Regulatory Subunit of Protein Phosphatase 2A Is Required for Control of G1 Cyclin Transcription and Nutrient Modulation of Cell Size. PLoS Genetics, 2009, 5, e1000727. | 1.5  | 31        |
| 22 | Regulation of Mih1/Cdc25 by protein phosphatase 2A and casein kinase 1. Journal of Cell Biology, 2008, 180, 931-945.                                                             | 2.3  | 57        |
| 23 | Cdk1 coordinates cell-surface growth with the cell cycle. Nature Cell Biology, 2007, 9, 506-515.                                                                                 | 4.6  | 132       |
| 24 | Cdk1-Dependent Regulation of the Mitotic Inhibitor Wee1. Cell, 2005, 122, 407-420.                                                                                               | 13.5 | 188       |
| 25 | Conservation of Mechanisms Controlling Entry into Mitosis. Current Biology, 2003, 13, 264-275.                                                                                   | 1.8  | 138       |
| 26 | Wee1-dependent mechanisms required for coordination of cell growth and cell division. Journal of Cell Science, 2003, 116, 4883-4890.                                             | 1.2  | 153       |
| 27 | Specific Inhibition of Elm1 Kinase Activity Reveals Functions Required for Early G1 Events. Molecular and Cellular Biology, 2003, 23, 6327-6337.                                 | 1.1  | 45        |
| 28 | Cell Cycle-dependent Assembly of a Gin4-Septin Complex. Molecular Biology of the Cell, 2002, 13, 2091-2105.                                                                      | 0.9  | 135       |
| 29 | The Sda1 Protein Is Required for Passage through Start. Molecular Biology of the Cell, 2001, 12, 201-219.                                                                        | 0.9  | 42        |
| 30 | The Elm1 Kinase Functions in a Mitotic Signaling Network in Budding Yeast. Molecular and Cellular<br>Biology, 1999, 19, 7983-7994.                                               | 1.1  | 102       |
| 31 | The Septins Are Required for the Mitosis-specific Activation of the Gin4 Kinase. Journal of Cell Biology, 1998, 143, 709-717.                                                    | 2.3  | 144       |
| 32 | Control of Mitotic Events by Nap1 and the Gin4 Kinase. Journal of Cell Biology, 1997, 138, 119-130.                                                                              | 2.3  | 148       |