
Ulrich Krause

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/481338/publications.pdf Version: 2024-02-01

HIDICH KDAUSE

#	Article	IF	CITATIONS
1	Quasi-static dispersion of dusts for the determination of lower explosion limits of hybrid mixtures. Journal of Loss Prevention in the Process Industries, 2022, 74, 104640.	3.3	6
2	Uncertainty consideration in CFD-models via response surface modeling: Application on realistic dense and light gas dispersion simulations. Journal of Loss Prevention in the Process Industries, 2022, 75, 104710.	3.3	1
3	Effect of oxygen concentration, inert gas and CH4/H2 addition on the minimum ignition energy of coal dusts. Journal of Loss Prevention in the Process Industries, 2022, 77, 104772.	3.3	6
4	Detection of Critical Conditions in Pouch Cells Based on Their Expansion Behavior. Batteries, 2022, 8, 42.	4.5	4
5	An Experimental Investigation of Thermal Runaway and Gas Release of NMC Lithium-Ion Pouch Batteries Depending on the State of Charge Level. Batteries, 2022, 8, 41.	4.5	10
6	Onset of smoldering fires in storage silos: Susceptibility to design, scenario, and material parameters. Fuel, 2021, 284, 118964.	6.4	8
7	Experimental study on the minimum explosion concentration of anthracite dust: The roles of O2 mole fraction, inert gas and CH4 addition. Journal of Loss Prevention in the Process Industries, 2021, 71, 104490.	3.3	9
8	Experimental and theoretical study on the inhibition effect of CO2/N2 blends on the ignition behavior of carbonaceous dust clouds. Chemical Engineering Research and Design, 2021, 153, 1-10.	5.6	14
9	Nex-Hys: minimum ignition temperature of hybrid mixtures. Journal of Loss Prevention in the Process Industries, 2021, 72, 104502.	3.3	4
10	Influence of Wettability on Bubble Formation from Submerged Orifices. Industrial & Engineering Chemistry Research, 2020, 59, 4071-4078.	3.7	8
11	Emissions of volatile hydrocarbons from floating roof tanks and their local dispersion: Considerations for normal operation and in case of damage. Journal of Loss Prevention in the Process Industries, 2020, 66, 104179.	3.3	4
12	Investigation of the explosion severity of multiphase hybrid mixtures. Process Safety Progress, 2020, 39, e12139.	1.0	8
13	Experimental measurement of initial evaporation mass flows from gasoline spills and comparison with empirical models. Process Safety Progress, 2020, 39, e12128.	1.0	1
14	Quantitative risk assessment of emissions from external floating roof tanks during normal operation and in case of damages using Bayesian Networks. Reliability Engineering and System Safety, 2020, 197, 106826.	8.9	10
15	Theoretical evaluation of lower explosion limit of hybrid mixtures. Journal of Loss Prevention in the Process Industries, 2019, 60, 296-302.	3.3	15
16	Experimental and theoretical investigation of the lower explosion limit of multiphase hybrid mixtures. Process Safety Progress, 2019, 38, e12045.	1.0	4
17	Experimental investigation of limiting oxygen concentration of hybrid mixtures. Journal of Loss Prevention in the Process Industries, 2019, 57, 120-130.	3.3	16
18	Extinguishing Smoldering Fires in Wood Pellets with Water Cooling: An Experimental Study. Fire Technology, 2019, 55, 257-284.	3.0	11

ULRICH KRAUSE

#	Article	IF	CITATIONS
19	Long-term emission measurements at a floating roof tank for gasoline storage. Journal of Loss Prevention in the Process Industries, 2018, 55, 152-161.	3.3	5
20	Lower explosion limit/minimum explosible concentration testing for hybrid mixtures in the Godbert-Greenwald furnace. Process Safety Progress, 2017, 36, 81-94.	1.0	11
21	Investigation of the minimum ignition temperature and lower explosion limit of multi-components hybrid mixtures in the Godbert-Greenwald furnace. Chemical Engineering Research and Design, 2017, 111, 785-794.	5.6	27
22	An Alternative Method for Thermal Plume–Induced Aerosol Release and Deposition Calculations in Large Geometries Using fireFoam. Nuclear Technology, 2017, 198, 43-52.	1.2	3
23	Experimental investigations on the repeatability of real scale fire tests. Fire Safety Journal, 2016, 82, 101-114.	3.1	15
24	Minimum Ignition Temperature of Dusts, Gases, and Solvents Hybrid Mixtures. Combustion Science and Technology, 2016, 188, 1693-1704.	2.3	5
25	CFD modeling approach of smoke toxicity and opacity for flaming and nonâ€flaming combustion processes. Fire and Materials, 2016, 40, 759-772.	2.0	3
26	Minimum ignition energy of hybrid mixtures of combustible dusts and gases. Chemical Engineering Research and Design, 2016, 102, 503-512.	5.6	53
27	Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures. Journal of Hazardous Materials, 2016, 307, 302-311.	12.4	82
28	Models to estimate the minimum ignition temperature of dusts and hybrid mixtures. Journal of Hazardous Materials, 2016, 304, 73-83.	12.4	26
29	Experimental investigation on the minimum ignition temperature of hybrid mixtures of dusts and gases or solvents. Journal of Hazardous Materials, 2016, 301, 314-326.	12.4	49
30	Determination of explosion limits – Criterion for ignition under non-atmospheric conditions. Journal of Loss Prevention in the Process Industries, 2015, 36, 562-568.	3.3	17
31	Auswirkung von Zündquellen und Systembeschaffenheit auf das Brandverhalten EPS-basierter Wämedäm-Verbundsysteme. Bauphysik, 2015, 37, 205-212.	0.5	2
32	Hot surfaces generated by sliding metal contacts and their effectiveness as an ignition source. Journal of Loss Prevention in the Process Industries, 2015, 36, 532-538.	3.3	16
33	Dustiness in workplace safety and explosion protection – Review and outlook. Journal of Loss Prevention in the Process Industries, 2015, 34, 22-29.	3.3	27
34	Explosion characteristics of three component hybrid mixtures. Chemical Engineering Research and Design, 2015, 98, 72-81.	5.6	31
35	Lower explosion limit of hybrid mixtures of burnable gas and dust. Journal of Loss Prevention in the Process Industries, 2015, 36, 497-504.	3.3	47
36	Influence of inert materials on the self-ignition of flammable dusts. Journal of Loss Prevention in the Process Industries, 2015, 36, 335-342.	3.3	10

ULRICH KRAUSE

#	Article	IF	CITATIONS
37	Explosion behaviour of metallic nano powders. Journal of Loss Prevention in the Process Industries, 2015, 36, 237-243.	3.3	34
38	Experimental investigations of the combustion efficiency for fire load calculations. Materialpruefung/Materials Testing, 2015, 57, 843-849.	2.2	2
39	The calculation of the heat release rate by oxygen consumption in a controlledâ€atmosphere cone calorimeter. Fire and Materials, 2014, 38, 204-226.	2.0	24
40	Dust concentration measurements during filling of a silo and CFD modeling of filling processes regarding exceeding the lower explosion limit. Journal of Loss Prevention in the Process Industries, 2014, 29, 122-137.	3.3	26
41	Quantifying The Combustion Behavior of Polymers by the Combustion Efficiency with Regard to the Weighting of Fire Loads. Transactions of the VÅB: Technical University of Ostrava, Safety Engineering Series, 2014, 9, 10-15.	0.1	1
42	Emerging risk of autoignition and fire in underground coal storage. Journal of Risk Research, 2013, 16, 447-457.	2.6	2
43	Influence of dustiness on small-scale vented dust explosions. Journal of Loss Prevention in the Process Industries, 2013, 26, 1433-1441.	3.3	10
44	Investigations into the influence of dustiness on dust explosions. Journal of Loss Prevention in the Process Industries, 2013, 26, 1616-1626.	3.3	19
45	Experience and the unexpected: risk and mitigation issues for operating underground storage silos for coal-fired power plant. Journal of Risk Research, 2013, 16, 487-500.	2.6	4
46	Approaches towards a generic methodology for storage of hazardous energy carriers and waste products. Journal of Risk Research, 2013, 16, 433-445.	2.6	1
47	Chemical–analytical investigation of fire products in intermediate storages of recycling materials. Fire and Materials, 2012, 36, 165-175.	2.0	5
48	The International FORUM of Fire Research Directors: A position paper on sustainability and fire safety. Fire Safety Journal, 2012, 49, 79-81.	3.1	10
49	Brandanalytische Untersuchungen von Polymerwerkstoffen. Materialpruefung/Materials Testing, 2010, 52, 124-132.	2.2	4
50	Investigations on the selfâ€ignition of deposits containing combustibles. Fire and Materials, 2008, 32, 231-248.	2.0	1
51	A numerical model to simulate smouldering fires in bulk materials and dust deposits. Journal of Loss Prevention in the Process Industries, 2006, 19, 218-226.	3.3	45
52	Experiments on the influence of pre-ignition turbulence on vented gas and dust explosions. Journal of Loss Prevention in the Process Industries, 2006, 19, 194-199.	3.3	37
53	The influence of initial conditions on the propagation of smouldering fires in dust accumulations. Journal of Loss Prevention in the Process Industries, 2001, 14, 527-532.	3.3	32
54	Propagation of smouldering in dust deposits caused by glowing nests or embedded hot bodies. Journal of Loss Prevention in the Process Industries, 2000, 13, 319-326.	3.3	11

ULRICH KRAUSE

#	Article	IF	CITATIONS
55	The influence of flow and turbulence on flame propagation through dust-air mixtures. Journal of Loss Prevention in the Process Industries, 2000, 13, 291-298.	3.3	23
56	Initiation of smouldering fires in combustible bulk materials by glowing nests and embedded hot bodies. Journal of Loss Prevention in the Process Industries, 1997, 10, 237-242.	3.3	11
57	Critical parameters for the ignition of dust layers at constant heat flux boundary conditions. Process Safety Progress, 1994, 13, 210-213.	1.0	14