Regino Zamora Rodriguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4813323/publications.pdf

Version: 2024-02-01

150 papers

10,974 citations

52 h-index 97 g-index

156 all docs

156 docs citations

156 times ranked

10417 citing authors

#	Article	IF	CITATIONS
1	Novel ecosystems: theoretical and management aspects of the new ecological world order. Global Ecology and Biogeography, 2006, 15 , 1 -7.	5.8	1,528
2	APPLYING PLANT FACILITATION TO FOREST RESTORATION: A META-ANALYSIS OF THE USE OF SHRUBS AS NURSE PLANTS. , 2004, 14, 1128-1138.		706
3	Beyond species loss: the extinction of ecological interactions in a changing world. Functional Ecology, 2015, 29, 299-307.	3.6	619
4	Seedling establishment of a boreal tree species (Pinus sylvestris) at its southernmost distribution limit: consequences of being in a marginal Mediterranean habitat. Journal of Ecology, 2004, 92, 266-277.	4.0	333
5	Use of Shrubs as Nurse Plants: A New Technique for Reforestation in Mediterranean Mountains. Restoration Ecology, 2002, 10, 297-305.	2.9	234
6	Canopy vs. soil effects of shrubs facilitating tree seedlings in Mediterranean montane ecosystems. Journal of Vegetation Science, 2005, 16, 191-198.	2.2	219
7	Benefits of Using Shrubs as Nurse Plants for Reforestation in Mediterranean Mountains: A 4-Year Study. Restoration Ecology, 2004, 12, 352-358.	2.9	217
8	Interactions of drought and shade effects on seedlings of four Quercus species: physiological and structural leaf responses. New Phytologist, 2006, 170, 819-834.	7.3	217
9	Conditional outcomes in plant-herbivore interactions: neighbours matter. Oikos, 2006, 113, 148-156.	2.7	205
10	Geographical variation in seed production, predation and abortion in Juniperus communis throughout its range in Europe. Journal of Ecology, 2000, 88, 435-446.	4.0	185
11	Pine processionary caterpillar Thaumetopoea pityocampa as a new threat for relict Mediterranean Scots pine forests under climatic warming. Biological Conservation, 2003, 110, 123-129.	4.1	173
12	Impact of vertebrate acorn- and seedling-predators on a Mediterranean Quercus pyrenaica forest. Forest Ecology and Management, 2003, 180, 125-134.	3.2	172
13	Top-Down Effects in a Tritrophic System: Parasitoids Enhance Plant Fitness. Ecology, 1994, 75, 1023-1030.	3.2	150
14	Facilitation of tree saplings by nurse plants: Microhabitat amelioration or protection against herbivores?. Journal of Vegetation Science, 2008, 19, 161-172.	2.2	148
15	Seed predation and dispersal in relict Scots pine forests in southern Spain. Plant Ecology, 1999, 145, 115-123.	1.6	142
16	Oak seedling survival and growth along resource gradients in Mediterranean forests: implications for regeneration in current and future environmental scenarios. Oikos, 2008, 117, 1683-1699.	2.7	136
17	Are pine plantations valid tools for restoring Mediterranean forests? An assessment along abiotic and biotic gradients. Ecological Applications, 2009, 19, 2124-2141.	3.8	129
18	GENERALIZATION VS. SPECIALIZATION IN THE POLLINATION SYSTEM OFHORMATHOPHYLLA SPINOSA(CRUCIFERAE). Ecology, 1999, 80, 796-805.	3.2	128

#	Article	IF	Citations
19	Response of tree seedlings to the abiotic heterogeneity generated by nurse shrubs: an experimental approach at different scales. Ecography, 2005, 28, 757-768.	4.5	125
20	Birds as Suppliers of Seed Dispersal in Temperate Ecosystems: Conservation Guidelines from Realâ€World Landscapes. Conservation Biology, 2010, 24, 1070-1079.	4.7	125
21	Yew (Taxus baccata L.) regeneration is facilitated by fleshy-fruited shrubs in Mediterranean environments. Biological Conservation, 2000, 95, 31-38.	4.1	124
22	Persistence, multiple demographic strategies and conservation in longâ€lived Mediterranean plants. Journal of Vegetation Science, 2003, 14, 921-926.	2.2	119
23	Age structure of Juniperus communis L. in the Iberian peninsula: Conservation of remnant populations in Mediterranean mountains. Biological Conservation, 1999, 87, 215-220.	4.1	113
24	Seedâ€mass effects in four Mediterranean <i>Quercus</i> species (Fagaceae) growing in contrasting light environments. American Journal of Botany, 2007, 94, 1795-1803.	1.7	112
25	Experimental study of pollination by ants in Mediterranean high mountain and arid habitats. Oecologia, 1996, 105, 236-242.	2.0	111
26	Herbivory and climatic warming: a Mediterranean outbreaking caterpillar attacks a relict, boreal pine species. Biodiversity and Conservation, 2004, 13, 493-500.	2.6	111
27	The spatial scale of plant–animal interactions: effects of resource availability and habitat structure. Ecological Monographs, 2011, 81, 103-121.	5.4	109
28	Salvage Logging Versus the Use of Burnt Wood as a Nurse Object to Promote Postâ€Fire Tree Seedling Establishment. Restoration Ecology, 2011, 19, 537-544.	2.9	107
29	Pollination by ants: consequences of the quantitative effects on a mutualistic system. Oecologia, 1992, 91, 410-418.	2.0	106
30	Functional equivalence in plant-animal interactions: ecological and evolutionary consequences. Oikos, 2000, 88, 442-447.	2.7	103
31	Effect of browsing by ungulates on sapling growth of Scots pine in a Mediterranean environment: consequences for forest regeneration. Forest Ecology and Management, 2001, 144, 33-42.	3.2	103
32	A review of the combination among global change factors in forests, shrublands and pastures of the Mediterranean Region: Beyond drought effects. Global and Planetary Change, 2017, 148, 42-54.	3.5	103
33	Differential light responses of Mediterranean tree saplings: linking ecophysiology with regeneration niche in four co-occurring species. Tree Physiology, 2006, 26, 947-958.	3.1	102
34	Spatial Variation in the Selective Scenarios of Hormathophylla spinosa (Cruciferae). American Naturalist, 2000, 155, 657-668.	2.1	99
35	Alleviation of Summer Drought Boosts Establishment Success of Pinus sylvestris in a Mediterranean Mountain: An Experimental Approach. Plant Ecology, 2005, 181, 191-202.	1.6	98
36	Host utilisation by moth and larval survival of pine processionary caterpillar Thaumetopoea pityocampa in relation to food quality in three Pinus species. Ecological Entomology, 2002, 27, 292-301.	2.2	96

#	Article	IF	CITATIONS
37	Soil-nutrient availability under a global-change scenario in a Mediterranean mountain ecosystem. Global Change Biology, 2011, 17, 1646-1657.	9.5	96
38	Microhabitats shift rank in suitability for seedling establishment depending on habitat type and climate. Journal of Ecology, 2005, 93, 1194-1202.	4.0	89
39	Disparity in elevational shifts of <scp>E</scp> uropean trees in response to recent climate warming. Global Change Biology, 2013, 19, 2490-2499.	9.5	83
40	The regeneration status of the endangered Acer opalus subsp. granatense throughout its geographical distribution in the Iberian Peninsula. Biological Conservation, 2005, 121, 195-206.	4.1	72
41	A seeding experiment for testing tree-community recruitment under variable environments: Implications for forest regeneration and conservation in Mediterranean habitats. Biological Conservation, 2009, 142, 1491-1499.	4.1	72
42	Recruitment limitation of forest communities in a degraded Mediterranean landscape. Journal of Vegetation Science, 2009, 20, 367-376.	2.2	70
43	Frugivory at Juniperus communis depends more on population characteristics than on individual attributes. Journal of Ecology, 2001, 89, 639-647.	4.0	68
44	Relating leaf photosynthetic rate to whole-plant growth: drought and shade effects on seedlings of four Quercus species. Functional Plant Biology, 2008, 35, 725.	2.1	68
45	The evolutionary ecology of carnivorous plants. Advances in Ecological Research, 2003, 33, 1-74.	2.7	67
46	Shifts in the regeneration niche of an endangered tree (Acer opalus ssp. granatense) during ontogeny: Using an ecological concept for application. Basic and Applied Ecology, 2008, 9, 635-644.	2.7	67
47	Herbivory has a greater impact in shade than in sun: response of Quercus pyrenaica seedlings to multifactorial environmental variation. Canadian Journal of Botany, 2004, 82, 357-364.	1.1	63
48	Restoring Quercus pyrenaica forests using pioneer shrubs as nurse plants. Applied Vegetation Science, 2006, 9, 137.	1.9	59
49	Seed Dispersal Patterns by Large Frugivorous Mammals in a Degraded Mosaic Landscape. Restoration Ecology, 2010, 18, 619-627.	2.9	59
50	Sporadic rainy events are more critical than increasing of drought intensity for woody species recruitment in a Mediterranean community. Oecologia, 2012, 169, 833-844.	2.0	58
51	Mechanisms blocking <i>Pinus sylvestris</i> colonization of Mediterranean mountain meadows. Journal of Vegetation Science, 2002, 13, 725-731.	2.2	57
52	FITNESS RESPONSES OF A CARNIVOROUS PLANT IN CONTRASTING ECOLOGICAL SCENARIOS. Ecology, 1998, 79, 1630-1644.	3.2	56
53	Post-fire soil respiration in relation to burnt wood management in a Mediterranean mountain ecosystem. Forest Ecology and Management, 2011, 261, 1436-1447.	3.2	56
54	Varying climate sensitivity at the dry distribution edge of Pinus sylvestris and P. nigra. Forest Ecology and Management, 2013, 308, 50-61.	3.2	54

#	Article	IF	CITATIONS
55	Restoring <i>Quercus pyrenaica</i> forests using pioneer shrubs as nurse plants. Applied Vegetation Science, 2006, 9, 137-142.	1.9	52
56	Plant Responses to Extreme Climatic Events: A Field Test of Resilience Capacity at the Southern Range Edge. PLoS ONE, 2014, 9, e87842.	2.5	50
57	Bird Rejection of Unhealthy Fruits Reinforces the Mutualism between Juniper and Its Avian Dispersers. Oikos, 1999, 85, 536.	2.7	49
58	Positive adjacency effects mediated by seed disperser birds in pine plantations. Ecological Applications, 2010, 20, 1053-1060.	3.8	48
59	Post-fire salvage logging reduces carbon sequestration in Mediterranean coniferous forest. Forest Ecology and Management, 2011, 262, 2287-2296.	3.2	47
60	Ungulate damage on Scots pines in Mediterranean environments: effects of association with shrubs. Canadian Journal of Botany, 2001, 79, 739-746.	1.1	47
61	Climate change and the incidence of a forest pest in Mediterranean ecosystems: can the North Atlantic Oscillation be used as a predictor?. Climatic Change, 2012, 113, 699-711.	3.6	45
62	The Trapping Success of a Carnivorous Plant, Pinguicula vallisneriifolia: The Cumulative Effects of Availability, Attraction, Retention and Robbery of Prey. Oikos, 1995, 73, 309.	2.7	44
63	Biomass allocation and growth responses of Scots pine saplings to simulated herbivory depend on plant age and light availability. Plant Ecology, 2008, 197, 229-238.	1.6	44
64	Protected areas as elicitors of human well-being in a developed region: A new synthetic (socioeconomic) approach. Biological Conservation, 2015, 187, 221-229.	4.1	44
65	CONDITIONAL OUTCOMES OF INTERACTIONS: THE POLLINATOR–PREY CONFLICT OF AN INSECTIVOROUS PLANT. Ecology, 1999, 80, 786-795.	3.2	43
66	THORNS AS INDUCED MECHANICAL DEFENSE IN A LONG-LIVED SHRUB (HORMATHOPHYLLA SPINOSA,) Tj ETQq	0	/Overlock 10
67	Feast and famine: previous defoliation limiting survival of pine processionary caterpillar Thaumetopoea pityocampa in Scots pine Pinus sylvestris. Acta Oecologica, 2004, 26, 203-210.	1.1	42
68	European Bird distribution is "well―represented by Special Protected Areas: Mission accomplished?. Biological Conservation, 2013, 159, 45-50.	4.1	41
69	Limits of pine forest distribution at the treeline: herbivory matters. Plant Ecology, 2012, 213, 459-469.	1.6	40
70	Direct and Indirect Effects of Climate on Demography and Early Growth of Pinus sylvestris at the Rear Edge: Changing Roles of Biotic and Abiotic Factors. PLoS ONE, 2013, 8, e59824.	2.5	38
71	Growth and stable isotope signals associated with drought-related mortality in saplings of two coexisting pine species. Oecologia, 2013, 173, 1613-1624.	2.0	37
72	Is spatial structure the key to promote plant diversity in Mediterranean forest plantations?. Basic and Applied Ecology, 2011, 12, 251-259.	2.7	36

#	Article	IF	CITATIONS
73	Evidence for plant traits driving specific drought resistance. A community field experiment. Environmental and Experimental Botany, 2012, 81, 55-61.	4.2	35
74	Responses of a carnivorous plant to prey and inorganic nutrients in a Mediterranean environment. Oecologia, 1997, 111, 443-451.	2.0	34
75	Effects of resource availability on plant recruitment at the community level in a Mediterranean mountain ecosystem. Perspectives in Plant Ecology, Evolution and Systematics, 2011, 13, 277-285.	2.7	34
76	Effect of Simulated Climate Change on Soil Respiration in a Mediterranean-Type Ecosystem: Rainfall and Habitat Type are More Important than Temperature or the Soil Carbon Pool. Ecosystems, 2012, 15, 299-310.	3.4	34
77	Generalist birds govern the seed dispersal of a parasitic plant with strong recruitment constraints. Oecologia, 2014, 176, 139-147.	2.0	34
78	Spatial heterogeneity of a parasitic plant drives the seedâ€dispersal pattern of a zoochorous plant community in a generalist dispersal system. Functional Ecology, 2016, 30, 459-467.	3.6	34
79	Parasites structuring ecological communities: The mistletoe footprint in Mediterranean pine forests. Functional Ecology, 2017, 31, 2167-2176.	3.6	34
80	Thorns as Induced Mechanical Defense in a Long-Lived Shrub (Hormathophylla spinosa, Cruciferae). Ecology, 2002, 83, 885.	3.2	33
81	Is insecticide spraying a viable and cost-efficient management practice to control pine processionary moth in Mediterranean woodlands?. Forest Ecology and Management, 2011, 261, 1732-1737.	3.2	33
82	Vertebrate Herbivores as Predators of Insect Herbivores: An Asymmetrical Interaction Mediated by Size Differences. Oikos, 1993, 66, 223.	2.7	32
83	The weight of the past: landâ€use legacies and recolonization of pine plantations by oak trees. Ecological Applications, 2013, 23, 1267-1276.	3.8	32
84	Wind pollination in highâ€mountain populations of <i>Hormathophylla spinosa</i> (Cruciferae). American Journal of Botany, 1996, 83, 580-585.	1.7	31
85	Species-specific effects on topsoil development affect Quercus ilex seedling performance. Acta Oecologica, 2006, 29, 65-71.	1.1	30
86	Charred wood remaining after a wildfire as a reservoir of macro- and micronutrients in a Mediterranean pine forest. International Journal of Wildland Fire, 2013, 22, 681.	2.4	30
87	Climate Warming and Past and Present Distribution of the Processionary Moths (Thaumetopoea spp.) in Europe, Asia Minor and North Africa., 2015,, 81-161.		30
88	Two new species of the carnivorous genusPinguicula, (Lentibulariaceae) from Mediterranean habitats. Plant Systematics and Evolution, 1996, 200, 41-60.	0.9	28
89	The feeding ecology of a carnivorous plant (Pinguicula nevadense): prey analysis and capture constraints. Oecologia, 1990, 84, 376-379.	2.0	27
90	Consistent pattern of habitat and species selection by post-dispersal seed predators in a Mediterranean mosaic landscape. Plant Ecology, 2009, 203, 137-147.	1.6	27

#	Article	IF	Citations
91	Consequences of plant–chemical diversity for domestic goat food preference in Mediterranean forests. Acta Oecologica, 2009, 35, 117-127.	1.1	27
92	Survival vs. growth trade-off in early recruitment challenges global warming impacts on Mediterranean mountain trees. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17, 369-378.	2.7	27
93	Repercussions of Simulated Climate Change on the Diversity of Woody-Recruit Bank in a Mediterranean-type Ecosystem. Ecosystems, 2011, 14, 672-682.	3.4	26
94	Temporal dynamic of parasiteâ€mediated linkages between the forest canopy and soil processes and the microbial community. New Phytologist, 2016, 211, 1382-1392.	7.3	26
95	Spatiotemporal patterns of seed dispersal in a windâ€dispersed Mediterranean tree (<i>Acer opalus</i>) Tj ETQq1	1.0.78431 4.5	14.rgBT /0\ 25
96	Canopy vs. soil effects of shrubs facilitating tree seedlings in Mediterranean montane ecosystems. Journal of Vegetation Science, 2005, 16, 191.	2.2	25
97	Linking stochasticity to determinism of woody plant recruitment in a mosaic landscape: A spatially explicit approach. Basic and Applied Ecology, 2011, 12, 161-171.	2.7	24
98	Linking safe sites for recruitment with hostâ€canopy heterogeneity: The case of a parasitic plant, <i>Viscum album</i> subsp. <i>austriacum</i> (Viscaceae). American Journal of Botany, 2014, 101, 957-964.	1.7	24
99	Ungulate damage on Scots pines in Mediterranean environments: effects of association with shrubs. Canadian Journal of Botany, 2001, 79, 739-746.	1.1	23
100	Ecology of seed germination of Pinus sylvestris L. at its southern, Mediterranean distribution range. Investigacion Agraria Sistemas Y Recursos Forestales, 2005, 14, 143.	0.4	23
101	Wind Pollination in High-Mountain Populations of Hormathophylla spinosa (Cruciferae). American Journal of Botany, 1996, 83, 580.	1.7	22
102	Taxonomic revision of the genusPinguicula L. in the Iberian Peninsula. Folia Geobotanica, 1999, 34, 337-361.	0.9	20
103	Annual variability in reproduction of Juniperus communis L. in a Mediterranean mountain: Relationship to seed predation and weather. Ecoscience, 2002, 9, 251-255.	1.4	20
104	Species-specific responses of tree saplings to herbivory in contrasting light environments: An experimental approach. Ecoscience, 2010, 17, 156-165.	1.4	20
105	Mistletoe Versus Host Pine: Does Increased Parasite Load Alter the Host Chemical Profile?. Journal of Chemical Ecology, 2019, 45, 95-105.	1.8	20
106	Observational and Experimental Study of a Carnivorous Plant - Ant Kleptobiotic Interaction. Oikos, 1990, 59, 368.	2.7	19
107	Long-Term Changes in Mountain Passerine Bird Communities in the Sierra Nevada (Southern Spain): A 30-Year Case Study. Ardeola, 2015, 62, 3.	0.7	19
108	Identifying the abiotic and biotic drivers behind the elevational distribution shift of a parasitic plant. Plant Biology, 2019, 21, 307-317.	3.8	19

#	Article	IF	CITATIONS
109	Carnivorous Plant-Slug Interaction: A Trip from Herbivory to Kleptoparasitism. Journal of Animal Ecology, 1996, 65, 154.	2.8	18
110	Effect of habitat type and soil moisture on pupal stage of a Mediterranean forest pest (<i>Thaumetopoea pityocampa</i>). Agricultural and Forest Entomology, 2017, 19, 130-138.	1.3	18
111	Generalization vs. Specialization in the Pollination System of Hormathophylla spinosa (Cruciferae). Ecology, 1999, 80, 796.	3.2	16
112	Do empty <i>Juniperus communis</i> seeds defend filled seeds against predation by <i>Apodemus sylvaticus</i> ?. Ecoscience, 2000, 7, 214-221.	1.4	16
113	Alpine Ecology in the Iberian Peninsula: What Do We Know, and What Do We Need to Learn?. Mountain Research and Development, 2013, 33, 437-442.	1.0	16
114	Seed Dispersers, Seed Predators, and Browsers Act Synergistically as Biotic Filters in a Mosaic Landscape. PLoS ONE, 2014, 9, e107385.	2.5	16
115	Do the arthropod communities on a parasitic plant and its hosts differ?. European Journal of Entomology, 0, 114, 215-221.	1.2	16
116	Mechanisms blocking Pinus sylvestris colonization of Mediterranean mountain meadows. Journal of Vegetation Science, 2002, 13, 725.	2.2	16
117	Differential impact of vertebrate and invertebrate herbivores on the reproductive output of <i>Hormathophylla spinosa</i> . Ecoscience, 2000, 7, 299-306.	1.4	15
118	Factors affecting intrafruit pattern of ovule abortion and seed production in Hormathophylla spinosa (Cruciferae). Plant Systematics and Evolution, 2003, 239, 215-229.	0.9	15
119	Tree damage and population density relationships for the pine processionary moth: Prospects for ecological research and pest management. Forest Ecology and Management, 2014, 328, 319-325.	3.2	13
120	From the individual to the landscape and back: timeâ€varying effects of climate and herbivory on tree sapling growth at distribution limits. Journal of Ecology, 2016, 104, 430-442.	4.0	13
121	Beneath the mistletoe: parasitized trees host a more diverse herbaceous vegetation and are more visited by rabbits. Annals of Forest Science, 2018, 75, 1.	2.0	13
122	Monitoring Global Change in High Mountains. Advances in Global Change Research, 2017, , 385-413.	1.6	11
123	Cambio climático y plagas: algo más que el clima. Ecosistemas, 2012, 21, 73-78.	0.4	11
124	Importancia de la heterogeneidad ambiental en la ecologÃa de plantas carnÃvoras mediterráneas: implicaciones para la conservación. Revista Chilena De Historia Natural, 2002, 75, 17.	1.2	10
125	Documenting, storing, and executing models in Ecology: A conceptual framework and real implementation in a global change monitoring program. Environmental Modelling and Software, 2014, 52, 192-199.	4.5	10
126	Mistletoe generates nonâ€trophic and traitâ€mediated indirect interactions through a shared host of herbivore consumers. Ecosphere, 2019, 10, e02564.	2.2	10

#	Article	IF	Citations
127	Sinfonevada: Dataset of Floristic diversity inÂSierraÂNevada forests (SE Spain). PhytoKeys, 2014, 35, 1-15.	1.0	9
128	No evidence of induced defence after defoliation in three pine species against an expanding pest, the pine processionary moth. Forest Ecology and Management, 2015, 356, 166-172.	3.2	9
129	Dartford Warblers Follow Stonechats While Foraging. Ornis Scandinavica, 1992, 23, 167.	1.0	8
130	Long-term monitoring of the Iberian ibex population in the Sierra Nevada of the southeast Iberian Peninsula. Scientific Data, 2020, 7, 203.	5. 3	8
131	Land-Use Legacies and Climate Change as a Double Challenge to Oak Forest Resilience: Mismatches of Geographical and Ecological Rear Edges. Ecosystems, 2021, 24, 755-773.	3.4	8
132	Implications of mistletoe parasitism for the host metabolome: A new plant identity in the forest canopy. Plant, Cell and Environment, 2021, 44, 3655-3666.	5.7	8
133	Dataset of Phenology of Mediterranean high-mountain meadows flora (Sierra Nevada, Spain). PhytoKeys, 2015, 46, 89-107.	1.0	8
134	Global Change Impact in the Sierra Nevada Longâ€Term Ecological Research Site (Southern Spain). Bulletin of the Ecological Society of America, 2017, 98, 157-164.	0.2	7
135	Local and landscape-scale biotic correlates of mistletoe distribution in Mediterraean pine forests. Forest Systems, 2012, 21, 179.	0.3	7
136	Ecological consequences of parasite host shifts under changing environments: More than a change of partner. Journal of Ecology, 2020, 108, 788-796.	4.0	6
137	Ecological Diversity within Rear-Edge: A Case Study from Mediterranean Quercus pyrenaica Willd Forests, 2021, 12, 10.	2.1	6
138	Interspecific Aggression by the Wheatear in a High-Mountain Passerine Community. Ornis Scandinavica, 1990, 21, 57.	1.0	5
139	Dataset of MIGRAME Project (Global Change, Altitudinal Range Shift and Colonization of Degraded) Tj ETQq1 1 C).784314 i 1.0	rgBT /Overlo
140	Dataset of Passerine bird communities in a Mediterranean high mountain (Sierra Nevada, Spain). ZooKeys, 2016, 552, 137-154.	1.1	3
141	Ecological assembly rules on arthropod community inhabiting mistletoes. Ecological Entomology, 2020, 45, 1088-1098.	2.2	3
142	Secondary foundation species foster novel plant–animal interactions in the forest canopy: evidence from mistletoe. Insect Conservation and Diversity, 2020, 13, 470-479.	3.0	3
143	Uniendo macro y microclima en paisajes de montaña: una aproximación conceptual e instrumental. Ecosistemas, 2021, 30, 2166.	0.4	3
144	Clima Nevada: Base de datos clim \tilde{A}_i tica del Observatorio de Cambio Global de Sierra Nevada. Ecosistemas, 2021, 30, 2155.	0.4	3

#	Article	IF	CITATIONS
145	Colonization Pattern of Abandoned Croplands by Quercus pyrenaica in a Mediterranean Mountain Region. Forests, 2021, 12, 1584.	2.1	3
146	Conditional Outcomes of Interactions: The Pollinator-Prey Conflict of an Insectivorous Plant. Ecology, 1999, 80, 786.	3.2	2
147	Impacts of global change in the Sierra Nevada LTER-site. Ecosistemas, 2016, 25, 65-71.	0.4	1
148	Spatiotemporal patterns of seed dispersal in a wind-dispersed Mediterranean tree (Acer opalus subsp.) Tj ETQq0	0 0 rgBT /	Overlock 10 T
149	Plant–Herbivore Interaction. Books in Soils, Plants, and the Environment, 2007, , .	0.1	O
150	Oak seedling survival and growth along resource gradients in Mediterranean forests: implications for regeneration in current and future environmental scenarios. Oikos, 2008, , .	2.7	0