
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4813280/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Oxidative stress in the brain: Novel cellular targets that govern survival during neurodegenerative disease. Progress in Neurobiology, 2005, 75, 207-246.	2.8	519
3	New Avenues of Exploration for Erythropoietin. JAMA - Journal of the American Medical Association, 2005, 293, 90.	3.8	508
4	Erythropoietin Is a Novel Vascular Protectant Through Activation of Akt1 and Mitochondrial Modulation of Cysteine Proteases. Circulation, 2002, 106, 2973-2979.	1.6	401
5	Erythropoietin fosters both intrinsic and extrinsic neuronal protection through modulation of microglia, Akt1, Bad, and caspase-mediated pathways. British Journal of Pharmacology, 2003, 138, 1107-1118.	2.7	239
6	The Vitamin Nicotinamide: Translating Nutrition into Clinical Care. Molecules, 2009, 14, 3446-3485.	1.7	212
7	mTOR: on target for novel therapeutic strategies in the nervous system. Trends in Molecular Medicine, 2013, 19, 51-60.	3.5	202
8	Oxidative Stress Biology and Cell Injury During Type 1 and Type 2 Diabetes Mellitus. Current Neurovascular Research, 2007, 4, 63-71.	0.4	197
9	Nicotinamide: necessary nutrient emerges as a novel cytoprotectant for the brain. Trends in Pharmacological Sciences, 2003, 24, 228-232.	4.0	193
10	Erythropoietin in the brain: can the promise to protect be fulfilled?. Trends in Pharmacological Sciences, 2004, 25, 577-583.	4.0	186
11	Mechanistic Insights Into Diabetes Mellitus and Oxidative Stress. Current Medicinal Chemistry, 2007, 14, 1729-1738.	1.2	184
12	The Wnt signaling pathway: Aging gracefully as a protectionist?. , 2008, 118, 58-81.		184
13	New Insights for Oxidative Stress and Diabetes Mellitus. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-17.	1.9	177
14	Apaf-1, Bcl-x _L , Cytochrome <i>c</i> , and Caspase-9 Form the Critical Elements for Cerebral Vascular Protection by Erythropoietin. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 320-330.	2.4	174
15	Erythropoietin prevents early and late neuronal demise through modulation of Akt1 and induction of caspase 1, 3, and 8. Journal of Neuroscience Research, 2003, 71, 659-669.	1.3	171
16	OutFOXOing disease and disability: the therapeutic potential of targeting FoxO proteins. Trends in Molecular Medicine, 2008, 14, 219-227.	3.5	171
17	Life Span Extension and Neuronal Cell Protection by Drosophila Nicotinamidase. Journal of Biological Chemistry, 2008, 283, 27810-27819.	1.6	166
18	Stress in the brain: novel cellular mechanisms of injury linked to Alzheimer's disease. Brain Research Reviews, 2005, 49, 1-21.	9.1	161

#	Article	IF	CITATIONS
19	Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. British Journal of Clinical Pharmacology, 2016, 82, 1245-1266.	1.1	160
20	The NAD+ Precursor Nicotinamide Governs Neuronal Survival During Oxidative Stress Through Protein Kinase B Coupled to FOXO3a and Mitochondrial Membrane Potential. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 728-743.	2.4	154
21	SIRT1: new avenues of discovery for disorders of oxidative stress. Expert Opinion on Therapeutic Targets, 2012, 16, 167-178.	1.5	148
22	Mammalian Target of Rapamycin: Hitting the Bull's-Eye for Neurological Disorders. Oxidative Medicine and Cellular Longevity, 2010, 3, 374-391.	1.9	146
23	Targeting disease through novel pathways of apoptosis and autophagy. Expert Opinion on Therapeutic Targets, 2012, 16, 1203-1214.	1.5	140
24	Cell Life Versus Cell Longevity: The Mysteries Surrounding the NAD+ Precursor Nicotinamide. Current Medicinal Chemistry, 2006, 13, 883-895.	1.2	127
25	Prevention of β-amyloid degeneration of microglia by erythropoietin depends on Wnt1, the PI 3-K/mTOR pathway, Bad, and Bcl-xL. Aging, 2012, 4, 187-201.	1.4	127
26	AKT1 drives endothelial cell membrane asymmetry and microglial activation through Bcl-xL and caspase 1, 3, and 9. Experimental Cell Research, 2004, 296, 196-207.	1.2	119
27	Erythropoietin: Elucidating new cellular targets that broaden therapeutic strategies. Progress in Neurobiology, 2008, 85, 194-213.	2.8	118
28	Erythropoietin and Oxidative Stress. Current Neurovascular Research, 2008, 5, 125-142.	0.4	118
29	A "FOXO―in sight: Targeting Foxo proteins from conception to cancer. Medicinal Research Reviews, 2009, 29, 395-418.	5.0	116
30	Oxidative stress: Biomarkers and novel therapeutic pathways. Experimental Gerontology, 2010, 45, 217-234.	1.2	115
31	Membrane asymmetry and DNA degradation: functionally distinct determinants of neuronal programmed cell death. , 2000, 59, 568-580.		114
32	Cellular demise and inflammatory microglial activation during β-amyloid toxicity are governed by Wnt1 and canonical signaling pathways. Cellular Signalling, 2007, 19, 1150-1162.	1.7	113
33	Shedding new light on neurodegenerative diseases through the mammalian target of rapamycin. Progress in Neurobiology, 2012, 99, 128-148.	2.8	112
34	Erythropoietin Employs Cell Longevity Pathways of SIRT1 to Foster Endothelial Vascular Integrity During Oxidant Stress. Current Neurovascular Research, 2011, 8, 220-235.	0.4	110
35	Early Apoptotic Vascular Signaling is Determined by Sirt1 Through Nuclear Shuttling, Forkhead Trafficking, Bad, and Mitochondrial Caspase Activation. Current Neurovascular Research, 2010, 7, 95-112.	0.4	107
36	Targeting cardiovascular disease with novel SIRT1 pathways. Future Cardiology, 2012, 8, 89-100.	0.5	102

#	Article	IF	CITATIONS
37	Raves and risks for erythropoietin. Cytokine and Growth Factor Reviews, 2008, 19, 145-155.	3.2	101
38	Vascular Injury During Elevated Glucose can be Mitigated by Erythropoietin and Wnt Signaling. Current Neurovascular Research, 2007, 4, 194-204.	0.4	100
39	Erythropoietin and Wnt1 Govern Pathways of mTOR, Apaf-1, and XIAP in Inflammatory Microglia. Current Neurovascular Research, 2011, 8, 270-285.	0.4	96
40	Oxidant Stress and Signal Transduction in the Nervous System with the PI 3-K, Akt, and mTOR Cascade. International Journal of Molecular Sciences, 2012, 13, 13830-13866.	1.8	96
41	Mammalian target of rapamycin signaling in diabetic cardiovascular disease. Cardiovascular Diabetology, 2012, 11, 45.	2.7	94
42	Wnt1, FoxO3a, and NF-κB oversee microglial integrity and activation during oxidant stress. Cellular Signalling, 2010, 22, 1317-1329.	1.7	92
43	A critical kinase cascade in neurological disorders: PI3K, Akt and mTOR. Future Neurology, 2012, 7, 733-748.	0.9	92
44	EPO Relies upon Novel Signaling of Wnt1 that Requires Akt1, FoxO3a,GSK-3β, and β-Catenin to Foster Vascular Integrity during Experimental Diabetes. Current Neurovascular Research, 2011, 8, 103-120.	0.4	91
45	Group I and Group III metabotropic glutamate receptor subtypes provide enhanced neuroprotection. Journal of Neuroscience Research, 2000, 62, 257-272.	1.3	89
46	FoxO proteins: cunning concepts and considerations for the cardiovascular system. Clinical Science, 2009, 116, 191-203.	1.8	89
47	Group I Metabotropic Receptor Neuroprotection Requires Akt and Its Substrates that Govern FOXO3a, Bim, and β-Catenin During Oxidative Stress. Current Neurovascular Research, 2006, 3, 107-117.	0.4	88
48	Wnt1 Neuroprotection Translates into Improved Neurological Function during Oxidant Stress and Cerebral Ischemia ThroughAKT1and Mitochondrial Apoptotic Pathways. Oxidative Medicine and Cellular Longevity, 2010, 3, 153-165.	1.9	87
49	"SLY AS A FOXO": New Paths with Forkhead Signaling in the Brain. Current Neurovascular Research, 2007, 4, 295-302.	0.4	86
50	Triple play: Promoting neurovascular longevity with nicotinamide, WNT, and erythropoietin in diabetes mellitus. Biomedicine and Pharmacotherapy, 2008, 62, 218-232.	2.5	86
51	Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer. Current Neurovascular Research, 2017, 14, 299-304.	0.4	84
52	WISP1: Clinical Insights for a Proliferative and Restorative Member of the CCN Family. Current Neurovascular Research, 2014, 11, 378-389.	0.4	83
53	The Forkhead Transcription Factor FOXO3a Controls Microglial Inflammatory Activation and Eventual Apoptotic Injury through Caspase 3. Current Neurovascular Research, 2009, 6, 20-31.	0.4	81
54	A Fork in the Path: Developing Therapeutic Inroads with FoxO Proteins. Oxidative Medicine and Cellular Longevity, 2009, 2, 119-129.	1.9	80

#	Article	IF	CITATIONS
55	Erythropoietin: New Directions for the Nervous System. International Journal of Molecular Sciences, 2012, 13, 11102-11129.	1.8	78
56	Taking aim at Alzheimer's disease through the mammalian target of rapamycin. Annals of Medicine, 2014, 46, 587-596.	1.5	78
57	Cardiovascular Disease and mTOR Signaling. Trends in Cardiovascular Medicine, 2011, 21, 151-155.	2.3	77
58	PRAS40 Is an Integral Regulatory Component of Erythropoietin mTOR Signaling and Cytoprotection. PLoS ONE, 2012, 7, e45456.	1.1	77
59	FoxO Proteins in the Nervous System. Analytical Cellular Pathology, 2015, 2015, 1-15.	0.7	77
60	Driving neural regeneration through the mammalian target of rapamycin. Neural Regeneration Research, 2014, 9, 1413.	1.6	77
61	Novel applications of trophic factors, Wnt and WISP for neuronal repair and regeneration in metabolic disease. Neural Regeneration Research, 2015, 10, 518.	1.6	75
62	Cellular Mechanisms of Protection by Metabotropic Glutamate Receptors During Anoxia and Nitric Oxide Toxicity. Journal of Neurochemistry, 1996, 66, 2419-2428.	2.1	73
63	FoxO Transcription Factors and Regenerative Pathways in Diabetes Mellitus. Current Neurovascular Research, 2015, 12, 404-413.	0.4	72
64	FOXO3a governs early and late apoptotic endothelial programs during elevated glucose through mitochondrial and caspase signaling. Molecular and Cellular Endocrinology, 2010, 321, 194-206.	1.6	71
65	Neuronal intracellular pH directly mediates nitric oxide-induced programmed cell death. , 1999, 40, 171-184.		70
66	Insights into oxidative stress and potential novel therapeutic targets for Alzheimer disease. Restorative Neurology and Neuroscience, 2004, 22, 87-104.	0.4	70
67	Neuroprotection of Lubeluzole Is Mediated Through the Signal Transduction Pathways of Nitric Oxide. Journal of Neurochemistry, 1997, 68, 710-714.	2.1	68
68	Wnt1 Inducible Signaling Pathway Protein 1 (WISP1) Targets PRAS40 to Govern β-Amyloid Apoptotic Injury of Microglia. Current Neurovascular Research, 2012, 9, 239-249.	0.4	68
69	Wnt1 Inducible Signaling Pathway Protein 1 (WISP1) Blocks Neurodegeneration through Phosphoinositide 3 Kinase/Akt1 and Apoptotic Mitochondrial Signaling Involving Bad, Bax, Bim, and Bcl-xL. Current Neurovascular Research, 2012, 9, 20-31.	0.4	67
70	Novel directions for diabetes mellitus drug discovery. Expert Opinion on Drug Discovery, 2013, 8, 35-48.	2.5	67
71	WISP1 (CCN4) Autoregulates its Expression and Nuclear Trafficking of β-Catenin during Oxidant Stress with Limited Effects upon Neuronal Autophagy. Current Neurovascular Research, 2012, 9, 91-101.	0.4	66
72	FoxO3a Governs Early Microglial Proliferation and Employs Mitochondrial Depolarization with Caspase 3, 8, and 9 Cleavage During Oxidant Induced Apoptosis. Current Neurovascular Research, 2009, 6, 223-238.	0.4	64

#	Article	IF	CITATIONS
73	WISP1 Neuroprotection Requires FoxO3a Post-Translational Modulation with Autoregulatory Control of SIRT1. Current Neurovascular Research, 2013, 10, 54-69.	0.4	64
74	Driving Cellular Plasticity and Survival Through the Signal Transduction Pathways of Metabotropic Glutamate Receptors. Current Neurovascular Research, 2005, 2, 425-446.	0.4	63
75	Clever cancer strategies with FoxO transcription factors. Cell Cycle, 2008, 7, 3829-3839.	1.3	63
76	SIRT1 and stem cells: In the forefront with cardiovascular disease, neurodegeneration and cancer. World Journal of Stem Cells, 2015, 7, 235.	1.3	63
77	New Strategies for Alzheimer Disease and Cognitive Impairment. Oxidative Medicine and Cellular Longevity, 2009, 2, 279-289.	1.9	62
78	The "O―Class: Crafting Clinical Care with FoxO Transcription Factors. Advances in Experimental Medicine and Biology, 2009, 665, 242-260.	0.8	61
79	Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR. Neural Regeneration Research, 2016, 11, 372.	1.6	61
80	Tuberous Sclerosis Protein 2 (TSC2) Modulates CCN4 Cytoprotection During Apoptotic Amyloid Toxicity in Microglia. Current Neurovascular Research, 2013, 10, 29-38.	0.4	59
81	Cutting through the Complexities of mTOR for the Treatment of Stroke. Current Neurovascular Research, 2014, 11, 177-186.	0.4	59
82	Attempted Cell Cycle Induction in Post-Mitotic Neurons Occurs in Early and Late Apoptotic Programs Through Rb, E2F1, and Caspase 3. Current Neurovascular Research, 2006, 3, 25-39.	0.4	58
83	The Mechanistic Target of Rapamycin (mTOR): Novel Considerations as an Antiviral Treatment. Current Neurovascular Research, 2020, 17, 332-337.	0.4	57
84	Forkhead transcription factors: new considerations for alzheimer's disease and dementia. Journal of Translational Science, 2016, 2, 241-247.	0.2	56
85	Metabotropic glutamate receptor subtypes independently modulate neuronal intracellular calcium. , 1999, 55, 472-485.		55
86	mTOR: Driving apoptosis and autophagy for neurocardiac complications of diabetes mellitus. World Journal of Diabetes, 2015, 6, 217.	1.3	51
87	Novel Avenues of Drug Discovery and Biomarkers for Diabetes Mellitus. Journal of Clinical Pharmacology, 2011, 51, 128-152.	1.0	50
88	Targeting the core of neurodegeneration: FoxO, mTOR, and SIRT1. Neural Regeneration Research, 2021, 16, 448.	1.6	50
89	Regeneration in the nervous system with erythropoietin. Frontiers in Bioscience - Landmark, 2016, 21, 561-596.	3.0	48
90	Disease onset and aging in the world of circular RNAs. Journal of Translational Science, 2016, 2, 327-329.	0.2	48

#	Article	IF	CITATIONS
91	Erythropoietin, Forkhead Proteins, and Oxidative Injury: Biomarkers and Biology. Scientific World Journal, The, 2009, 9, 1072-1104.	0.8	47
92	Erythropoietin and diabetes mellitus. World Journal of Diabetes, 2015, 6, 1259.	1.3	47
93	Diabetic stress: new triumphs and challenges to maintain vascular longevity. Expert Review of Cardiovascular Therapy, 2008, 6, 281-284.	0.6	43
94	Rogue proliferation versus restorative protection: Where do we draw the line for Wnt and Forkhead signaling?. Expert Opinion on Therapeutic Targets, 2008, 12, 905-916.	1.5	42
95	Programming Apoptosis and Autophagy with Novel Approaches for Diabetes Mellitus. Current Neurovascular Research, 2015, 12, 173-188.	0.4	42
96	The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): oversight for neurodegenerative disorders. Biochemical Society Transactions, 2018, 46, 351-360.	1.6	41
97	Critical temporal modulation of neuronal programmed cell injury. Cellular and Molecular Neurobiology, 2000, 20, 383-400.	1.7	39
98	Diabetes Mellitus: Channeling Care through Cellular Discovery. Current Neurovascular Research, 2010, 7, 59-74.	0.4	37
99	The bright side of reactive oxygen species: lifespan extension without cellular demise. Journal of Translational Science, 2016, 2, 185-187.	0.2	37
100	Forkhead Transcription Factors: Formulating a FOXO Target for Cognitive Loss. Current Neurovascular Research, 2018, 14, 415-420.	0.4	37
101	Therapeutic Promise and Principles: Metabotropic Glutamate Receptors. Oxidative Medicine and Cellular Longevity, 2008, 1, 1-14.	1.9	35
102	Harnessing the Power of SIRT1 and Non-coding RNAs in Vascular Disease. Current Neurovascular Research, 2017, 14, 82-88.	0.4	35
103	Picking a bone with WISP1 (CCN4): new strategies against degenerative joint disease. Journal of Translational Science, 2016, 1, 83-85.	0.2	34
104	Warming Up to New Possibilities with the Capsaicin Receptor TRPV1: mTOR, AMPK, and Erythropoietin. Current Neurovascular Research, 2017, 14, 184-189.	0.4	32
105	Erythropoietin and mTOR: A "One-Two Punch―for Aging-Related Disorders Accompanied by Enhanced Life Expectancy. Current Neurovascular Research, 2016, 13, 329-340.	0.4	32
106	Cognitive impairment with diabetes mellitus and metabolic disease: innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Review of Clinical Pharmacology, 2020, 13, 23-34.	1.3	31
107	Stem cell guidance through the mechanistic target of rapamycin. World Journal of Stem Cells, 2015, 7, 999-1009.	1.3	29
108	Novel Treatment Strategies for the Nervous System: Circadian Clock Genes, Non-coding RNAs, and Forkhead Transcription Factors. Current Neurovascular Research, 2018, 15, 81-91.	0.4	28

#	Article	IF	CITATIONS
109	New Insights for nicotinamide Metabolic disease autophagy and mTOR. Frontiers in Bioscience - Landmark, 2020, 25, 1925-1973.	3.0	28
110	Cognitive Impairment and Dementia: Gaining Insight through Circadian Clock Gene Pathways. Biomolecules, 2021, 11, 1002.	1.8	24
111	Sirtuins: Developing Innovative Treatments for Aged-Related Memory Loss and Alzheimer's Disease. Current Neurovascular Research, 2019, 15, 367-371.	0.4	22
112	Prospects and Perspectives for WISP1 (CCN4) in Diabetes Mellitus. Current Neurovascular Research, 2020, 17, 327-331.	0.4	21
113	Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. International Review of Neurobiology, 2020, 155, 1-35.	0.9	20
114	MicroRNAs and SIRT1: A Strategy for Stem Cell Renewal and Clinical Development?. Journal of Translational Science, 2015, 1, 55-57.	0.2	17
115	Neurodegeneration, memory loss, and dementia: the impact of biological clocks and circadian rhythm. Frontiers in Bioscience, 2021, 26, 614.	0.8	16
116	Charting a course for erythropoietin in traumatic brain injury. Journal of Translational Science, 2016, 2, 140-144.	0.2	16
117	Therapeutic targets for cancer: current concepts with PI 3-K, Akt, & mTOR. Indian Journal of Medical Research, 2013, 137, 243-6.	0.4	14
118	Healing the Heart with Sirtuins and Mammalian Forkhead Transcription Factors. Current Neurovascular Research, 2020, 17, 1-2.	0.4	9
119	Ringing in the New Year: New Prospects for Development, Aging and Longevity. Oxidative Medicine and Cellular Longevity, 2010, 3, 1-1.	1.9	8
120	Nicotinamide: Oversight of Metabolic Dysfunction Through SIRT1, mTOR, and Clock Genes. Current Neurovascular Research, 2021, 17, 765-783.	0.4	8
121	Heightened Attention for Wnt Signaling in Diabetes Mellitus. Current Neurovascular Research, 2020, 17, 215-217.	0.4	7
122	Nicotinamide as a Foundation for Treating Neurodegenerative Disease and Metabolic Disorders. Current Neurovascular Research, 2021, 18, 134-149.	0.4	6
123	Paring Down Obesity and Metabolic Disease by Targeting Inflammation and Oxidative Stress. Current Neurovascular Research, 2015, 12, 107-108.	0.4	5
124	Novel Stem Cell Strategies with mTOR. , 2016, , 3-22.		5
125	Epigenetics in the Cerebrovascular System: Changing the Code without Altering the Sequence. Current Neurovascular Research, 2014, 11, 1-3.	0.4	4
126	Sirtuins in metabolic disease: innovative therapeutic strategies with SIRT1, AMPK, mTOR, and nicotinamide. , 2021, , 3-23.		4

8

#	Article	IF	CITATIONS
127	Yin Yang: A Balancing Act for Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2010, 3, 227-227.	1.9	3
128	Heal Thyself: Endogenous Pathways of Protection for Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2010, 3, 75-76.	1.9	2
129	New Challenges and Strategies for Cardiac Disease: Autophagy, mTOR, and AMP-activated Protein Kinase. Current Neurovascular Research, 2020, 17, 111-112.	0.4	2
130	Environmental Stimulus Package: Potential for a Rising Oxidative Deficit. Oxidative Medicine and Cellular Longevity, 2009, 2, 179-180.	1.9	1
131	Metabolic Clues: Novel Directives for Broad Treatment Strategies. Oxidative Medicine and Cellular Longevity, 2010, 3, 289-289.	1.9	1
132	Novel treatment strategies for neurodegenerative disease with sirtuins. , 2021, , 3-21.		1
133	Tolerance: A Virtue During Times of Stress. Oxidative Medicine and Cellular Longevity, 2010, 3, 167-167.	1.9	0
134	Just in the Nick of Time: Targeting Acute versus Chronic Disease. Oxidative Medicine and Cellular Longevity, 2010, 3, 359-360.	1.9	0
135	Novel Pathways of Autophagy for the Treatment of Nervous System Disorders. , 2018, , 187-197.		0