
Kinga Pielichowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4813269/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrophilic and hydrophobic films based on polyurethane cationomers containing TiO2 nanofiller. Progress in Organic Coatings, 2022, 162, 106524.	3.9	6
2	Maltotriose-based star polymers as self-healing materials. European Polymer Journal, 2022, 164, 110972.	5.4	1
3	Preparation, Characterization, and Bioactivity Evaluation of Polyoxymethylene Copolymer/Nanohydroxyapatite-g-Poly(ε-caprolactone) Composites. Nanomaterials, 2022, 12, 858.	4.1	4
4	The Effect of Ash Silanization on the Selected Properties of Rigid Polyurethane Foam/Coal Fly Ash Composites. Energies, 2022, 15, 2014.	3.1	5
5	The Effect of Starch and Magnetite on the Physicochemical Properties of Polyurethane Composites for Hyperthermia Treatment. Advances in Polymer Technology, 2022, 2022, 1-24.	1.7	1
6	Polymer Nanocomposites: Preparation, Characterisation and Applications. Nanomaterials, 2022, 12, 1900.	4.1	1
7	Renewable energy systems for building heating, cooling and electricity production with thermal energy storage. Renewable and Sustainable Energy Reviews, 2022, 165, 112560.	16.4	70
8	Thermal properties of polyurethane-based composites modified with chitosan for biomedical applications. Journal of Thermal Analysis and Calorimetry, 2021, 143, 3471-3478.	3.6	17
9	Polyurethane cationomers containing fluorinated soft segments with hydrophobic properties. Colloid and Polymer Science, 2021, 299, 1011-1029.	2.1	6
10	Recent Developments in Polyurethane-Based Materials for Bone Tissue Engineering. Polymers, 2021, 13, 946.	4.5	37
11	Fly Ash as an Eco-Friendly Filler for Rigid Polyurethane Foams Modification. Materials, 2021, 14, 6604.	2.9	22
12	Synthesis and property of polyurethane elastomer for biomedical applications based on nonaromatic isocyanates, polyesters, and ethylene glycol. Colloid and Polymer Science, 2020, 298, 1077-1093.	2.1	25
13	Surface and Structural Properties of Medical Acrylonitrile Butadiene Styrene Modified with Silver Nanoparticles. Polymers, 2020, 12, 197.	4.5	7
14	Distinct Influence of Saturated Fatty Acids on Malignant and Nonmalignant Human Lung Epithelial Cells. Lipids, 2020, 55, 117-126.	1.7	6
15	The Influence of Nanohydroxyapatite on Selected Properties of Polyurethane-Based Bone Scaffold. Materials Proceedings, 2020, 4, .	0.2	0
16	Biogas production from agricultural and municipal waste. E3S Web of Conferences, 2019, 108, 02010.	0.5	3
17	Examining the effect of starch and hydroxyapatite crosslinking on the thermal properties of polyurethane-based biomaterials. Thermochimica Acta, 2019, 682, 178414.	2.7	10
18	Fluidized bed combustion fly ash as filler in composite polyurethane materials. Waste Management, 2019, 92, 115-123.	7.4	27

Kinga Pielichowska

#	Article	IF	CITATIONS
19	Analysis of nanomaterials and nanocomposites by thermoanalytical methods. Thermochimica Acta, 2019, 675, 140-163.	2.7	22
20	Polyurethane cationomer films as ecological membranes for building industry. Progress in Organic Coatings, 2019, 130, 83-92.	3.9	11
21	Thermal Stabilization of Polyoxymethylene by PEC-Functionalized Hydroxyapatite: Examining the Effects of Reduced Formaldehyde Release and Enhanced Bioactivity. Advances in Polymer Technology, 2019, 2019, 1-17.	1.7	19
22	Chitosan-Based Hydrogels: Preparation, Properties, and Applications. Polymers and Polymeric Composites, 2019, , 1665-1693.	0.6	13
23	Thermal Decomposition of Polymer Nanocomposites With Functionalized Nanoparticles. , 2019, , 405-435.		56
24	Physicochemical and antibacterial properties of polyurethane coatings modified by <scp>ZnO</scp> . Polymers for Advanced Technologies, 2018, 29, 1056-1067.	3.2	14
25	Multifunctional polymer coatings for titanium implants. Materials Science and Engineering C, 2018, 93, 950-957.	7.3	27
26	Chitosan-Based Hydrogels: Preparation, Properties, and Applications. Polymers and Polymeric Composites, 2018, , 1-29.	0.6	1
27	Study of chemical, physico-mechanical and biological properties of 4,4′-methylenebis(cyclohexyl) Tj ETQq1 1	0.784314	rgBT /Overloo
28	Polymer Nanocomposites. Handbook of Thermal Analysis and Calorimetry, 2018, 6, 431-485.	1.6	13
29	Polyurethane cationomers modified by polysiloxane. Polymers for Advanced Technologies, 2017, 28, 1366-1374.	3.2	12
30	Mechanical and thermal properties of carbon-nanotube-reinforced self-healing polyurethanes. Journal of Materials Science, 2017, 52, 12221-12234.	3.7	35
31	The Influence of Nanohydroxyapatite on the Thermal, Mechanical, and Tribological Properties of Polyoxymethylene Nanocomposites. International Journal of Polymer Science, 2017, 2017, 1-11.	2.7	8
32	Naturalne pierwiastki promieniotwórcze w odpadach generowanych w trakcie poszukiwań i wydobycia gazu z Å,upków w pųÅ,nocno-wschodniej Polsce. Przemysl Chemiczny, 2017, 1, 95-97.	0.0	0
33	Acrylic bone cements modified with poly(ethylene glycol)â€based biocompatible phaseâ€change materials. Journal of Applied Polymer Science, 2016, 133, .	2.6	8
34	Modification of acrylic bone cements by poly(ethylene glycol) with different molecular weight. Polymers for Advanced Technologies, 2016, 27, 1284-1293.	3.2	11
35	Polyoxymethylene-copolymer based composites with PEG-grafted hydroxyapatite with improved thermal stability. Thermochimica Acta, 2016, 633, 98-107.	2.7	26
36	The influence of polyoxymethylene molar mass on the oxidative thermal degradation of its nanocomposites with hydroxyapatite. Journal of Thermal Analysis and Calorimetry, 2016, 124, 751-765.	3.6	16

KINGA PIELICHOWSKA

#	Article	IF	CITATIONS
37	Polyurethane/graphite nano-platelet composites for thermal energy storage. Renewable Energy, 2016, 91, 456-465.	8.9	67
38	The influence of chain extender on properties of polyurethane-based phase change materials modified with graphene. Applied Energy, 2016, 162, 1024-1033.	10.1	65
39	Polyurethane/graphene nanocomposites as phase change materials for thermal energy storage. , 2015, ,		5
40	Preparation and characterization of polyoxymethylene nanocomposites. , 2015, , 103-125.		5
41	Composites prepared from the waterborne polyurethane cationomers—modified graphene. Part I. Synthesis, structure, and physicochemical properties. Colloid and Polymer Science, 2015, 293, 421-431.	2.1	16
42	Polyurethane composite foams with β-tricalcium phosphate for biomedical applications. Journal of Reinforced Plastics and Composites, 2015, 34, 1856-1870.	3.1	8
43	Thermooxidative degradation of polyoxymethylene homo- and copolymer nanocomposites with hydroxyapatite: Kinetic and thermoanalytical study. Thermochimica Acta, 2015, 600, 7-19.	2.7	34
44	Polyurethanes modified by hydroxyapatite as biomaterials. Polimery, 2015, 60, 559-571.	0.7	4
45	Comparison of Hydrolytic Resistance of Polyurethanes and Poly(Urethanemethacrylate) Copolymers in Terms of their Use as Polymer Coatings in Contact with the Physiological Liquid. Polish Journal of Chemical Technology, 2014, 16, 16-26.	0.5	5
46	Phase change materials for thermal energy storage. Progress in Materials Science, 2014, 65, 67-123.	32.8	1,475
47	A study on the melting and crystallization of polyoxymethyleneâ€copolymer/hydroxyapatite nanocomposites. Polymers for Advanced Technologies, 2013, 24, 318-330.	3.2	23
48	TOPEM DSC study of glass transition region of polyurethane cationomers. Thermochimica Acta, 2012, 545, 187-193.	2.7	13
49	Preparation and characterization of polyoxymethyleneâ€copolymer/hydroxyapatite nanocomposites for longâ€ŧerm bone implants. Polymers for Advanced Technologies, 2012, 23, 1141-1150.	3.2	30
50	The influence of molecular weight on the properties of polyacetal/hydroxyapatite nanocomposites. Part 1. Microstructural analysis and phase transition studies. Journal of Polymer Research, 2012, 19, 1.	2.4	18
51	The influence of molecular weight on the properties of polyacetal/hydroxyapatite nanocomposites. Part 2. In vitro assessment. Journal of Polymer Research, 2012, 19, 1.	2.4	15
52	Polyoxymethyleneâ€homopolymer/hydroxyapatite nanocomposites for biomedical applications. Journal of Applied Polymer Science, 2012, 123, 2234-2243.	2.6	22
53	Kinetics of Isothermal and Nonisothermal Crystallization of Poly(ethylene oxide) (PEO) in PEO/Fatty Acid Blends. Journal of Macromolecular Science - Physics, 2011, 50, 1714-1738.	1.0	5
54	Comparison of phase structures and surface free energy values for the coatings synthesised from linear polyurethanes and from waterborne polyurethane cationomers. Colloid and Polymer Science, 2011, 289, 1757-1767.	2.1	29

Kinga Pielichowska

#	Article	IF	CITATIONS
55	Biodegradable PEO/celluloseâ€based solid–solid phase change materials. Polymers for Advanced Technologies, 2011, 22, 1633-1641.	3.2	66
56	Novel biodegradable form stable phase change materials: Blends of poly(ethylene oxide) and gelatinized potato starch. Journal of Applied Polymer Science, 2010, 116, 1725-1731.	2.6	16
57	Thermal degradation kinetics of polyurethane–siloxane anionomers. Thermochimica Acta, 2010, 507-508, 91-98.	2.7	16
58	Crystallization behaviour of PEO with carbon-based nanonucleants for thermal energy storage. Thermochimica Acta, 2010, 510, 173-184.	2.7	36
59	Bioactive Polymer/Hydroxyapatite (Nano)composites for Bone Tissue Regeneration. Advances in Polymer Science, 2010, , 97-207.	0.8	78
60	Assesment of the usability of Mg(OH) ₂ obtained from the solution after sphalerite leaching for the winning of polyetylene composition. Polish Journal of Chemical Technology, 2009, 11, 34-36.	0.5	0
61	Preparation of polyoxymethylene/hydroxyapatite nanocomposites by melt processing. International Journal of Material Forming, 2008, 1, 941-944.	2.0	13
62	PEO/fatty acid blends for thermal energy storage materials. Structural/morphological features and hydrogen interactions. European Polymer Journal, 2008, 44, 3344-3360.	5.4	64
63	Assesment of the usability of Mg(OH) ₂ obtained from the solution after sphalerite leaching for the winning of polyetylene composition. Polish Journal of Chemical Technology, 2008, 10, 37-39.	0.5	1
64	Step-scan Alternating Differential Scanning Calorimetry Studies on the Crystallisation Behaviour of Low Molecular Weight Polyethylene. , 2007, , 427-434.		1
65	Thermal properties of poly(ethylene oxide)/lauric acid blends: A SSA–DSC study. Thermochimica Acta, 2006, 442, 18-24.	2.7	25
66	Non-oxidative thermal degradation of poly(ethylene oxide): kinetic and thermoanalytical study. Journal of Analytical and Applied Pyrolysis, 2005, 73, 131-138.	5.5	125
67	Recent developments in polymeric phase change materials for energy storage: poly(ethylene) Tj ETQq1 1 0.7843	14 rgBT /(3.2	Dverlock 10 T 41
68	Step-scan alternating DSC study of melting and crystallisation in poly(ethylene oxide). Polymer, 2004, 45, 1235-1242.	3.8	41
69	Phase Behavior of Poly(Ethylene Oxide) Studied by Modulatedâ€īemperature DSC—Influence of the Molecular Weight. Journal of Macromolecular Science - Physics, 2004, 43, 459-470.	1.0	8
70	Phase transitions of poly(ethylene oxide)/carboxylic acid blends able to storage of energy. Polimery, 2004, 49, 173-179.	0.7	2
71	Some comments on the melting and recrystallization of polyoxymethylene by high-speed and StepScan differential scanning calorimetry. Polimery, 2004, 49, 558-560.	0.7	4
72	Differential Scanning Calorimetry Study of Blends of Poly(ethylene glycol) with Selected Fatty Acids. Macromolecular Materials and Engineering, 2003, 288, 259-264.	3.6	64

#	Article	IF	CITATIONS
73	Binary blends of polyethers with fatty acids: A thermal characterization of the phase transitions. Journal of Applied Polymer Science, 2003, 90, 861-870.	2.6	27
74	Modulated temperature DSC studies on the phase transitions of poly(ethylene oxide). Effect of temperature step. Polimery, 2003, 48, 455-457.	0.7	1
75	Differential scanning calorimetry studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials. Polymers for Advanced Technologies, 2002, 13, 690-696.	3.2	255
76	http://en.www.ichp.pl/Application-of-modulated-differential-scanning-calorimetry Polimery, 2002, 47, 784-792.	0.7	3