
Beata Wielgus-Kutrowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4813256/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single tryptophan Y160W mutant of homooligomeric E. coli purine nucleoside phosphorylase implies that dimers forming the hexamer are functionally not equivalent. Scientific Reports, 2021, 11, 11144.	3.3	3
2	Chromophore of an Enhanced Green Fluorescent Protein Can Play a Photoprotective Role Due to Photobleaching. International Journal of Molecular Sciences, 2021, 22, 8565.	4.1	4
3	Searching for Hydrodynamic Orienting Effects in the Association of Tri-N-acetylglucosamine with Hen Egg-White Lysozyme. Journal of Physical Chemistry B, 2021, 125, 10701-10709.	2.6	2
4	Tricyclic Nucleobase Analogs and Their Ribosides as Substrates and Inhibitors of Purine-Nucleoside Phosphorylases III. Aminopurine Derivatives. Molecules, 2020, 25, 681.	3.8	3
5	Analytical ultracentrifugation as a tool in the studies of aggregation of the fluorescent marker, Enhanced Green Fluorescent Protein. Acta Biochimica Polonica, 2020, 67, 85-91.	0.5	1
6	Heterodimerizing helices as tools for nanoscale control of the organization of protein-protein and protein-quantum dots. Biochimie, 2019, 167, 93-105.	2.6	4
7	Tri-Cyclic Nucleobase Analogs and their Ribosides as Substrates of Purine-Nucleoside Phosphorylases. Il Guanine and Isoguanine Derivatives. Molecules, 2019, 24, 1493.	3.8	7
8	Non–fluorescent mutant of green fluorescent protein sheds light on the mechanism of chromophore formation. FEBS Letters, 2018, 592, 1516-1523.	2.8	8
9	Part-of-the-sites binding and reactivity in the homooligomeric enzymes – facts and artifacts. Archives of Biochemistry and Biophysics, 2018, 642, 31-45.	3.0	14
10	<i>HelicobacterÂpylori</i> purine nucleoside phosphorylase shows new distribution patterns of open and closed active site conformations and unusual biochemical features. FEBS Journal, 2018, 285, 1305-1325.	4.7	11
11	Tricyclic nitrogen base 1,N ⁶ -ethenoadenine and its ribosides as substrates for purine-nucleoside phosphorylases: Spectroscopic and kinetic studies. Nucleosides, Nucleotides and Nucleic Acids, 2018, 37, 89-101.	1.1	8
12	β2-Type Amyloidlike Fibrils of Poly-l-glutamic Acid Convert into Long, Highly Ordered Helices upon Dissolution in Dimethyl Sulfoxide. Journal of Physical Chemistry B, 2018, 122, 11895-11905.	2.6	7
13	In the quest for new targets for pathogen eradication: the adenylosuccinate synthetase from the bacterium <i>Helicobacter pylori</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 1405-1414.	5.2	8
14	1,N6-ethenoadenine and other Fluorescent Nucleobase Analogs as Substrates for Purine-Nucleoside Phosphorylases: Spectroscopic and Kinetic Studies. Current Pharmaceutical Design, 2018, 23, 6948-6966.	1.9	6
15	Site-Selective Ribosylation of Fluorescent Nucleobase Analogs Using Purine-Nucleoside Phosphorylase as a Catalyst: Effects of Point Mutations. Molecules, 2016, 21, 44.	3.8	7
16	How can macromolecular crowding inhibit biological reactions? The enhanced formation of DNA nanoparticles. Scientific Reports, 2016, 6, 22033.	3.3	19
17	A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation. PLoS ONE, 2015, 10, e0126420.	2.5	71
18	Spectroscopic properties of two single-cysteine mutants of EGFP: C48S-EGFP and C70S-EGFP. Biomedical Spectroscopy and Imaging, 2014, 3, 231-236.	1.2	0

#	Article	IF	CITATIONS
19	Two fluorogenic substrates for purine nucleoside phosphorylase, selective for mammalian and bacterial forms of the enzyme. Analytical Biochemistry, 2014, 446, 25-27.	2.4	9
20	Homooligomerization is needed for stability: a molecular modelling and solution study of <i>EscherichiaÂcoli</i> purine nucleoside phosphorylase. FEBS Journal, 2014, 281, 1860-1871.	4.7	14
21	Purine nucleoside phosphorylase activity decline is linked to the decay of the trimeric form of the enzyme. Archives of Biochemistry and Biophysics, 2014, 549, 40-48.	3.0	7
22	Enzymatic Synthesis of Highly Fluorescent 8-Azapurine Ribosides Using a Purine Nucleoside Phosphorylase Reverse Reaction: Variable Ribosylation Sites. Molecules, 2013, 18, 12587-12598.	3.8	15
23	Still a Long Way to Fully Understanding the Molecular Mechanism of Escherichia coli Purine Nucleoside Phosphorylase. Croatica Chemica Acta, 2013, 86, 117-127.	0.4	7
24	Trimeric purine nucleoside phosphorylase: Exploring postulated one-third-of-the-sites binding in the transition state. Bioorganic and Medicinal Chemistry, 2012, 20, 6758-6769.	3.0	12
25	New phosphate binding sites in the crystal structure of <i>Escherichia coli</i> purine nucleoside phosphorylase complexed with phosphate and formycin A. FEBS Letters, 2012, 586, 967-971.	2.8	7
26	Validation of the catalytic mechanism of Escherichia coli purine nucleoside phosphorylase by structural and kinetic studies. Biochimie, 2011, 93, 1610-1622.	2.6	33
27	9â€Deazaguanine derivatives connected by a linker to difluoromethylene phosphonic acid are slowâ€binding picomolar inhibitors of trimeric purine nucleoside phosphorylase. FEBS Journal, 2010, 277, 1747-1760.	4.7	10
28	1.45Ã resolution crystal structure of recombinant PNP in complex with a pM multisubstrate analogue inhibitor bearing one feature of the postulated transition state. Biochemical and Biophysical Research Communications, 2010, 391, 703-708.	2.1	8
29	Overexpressed proteins may act as mops removing their ligands from the host cells: A case study of calf PNP. Biochemical and Biophysical Research Communications, 2010, 391, 1203-1209.	2.1	8
30	The comparison of aggregation and folding of enhanced green fluorescent protein (EGFP) by spectroscopic studies. Spectroscopy, 2010, 24, 343-348.	0.8	18
31	Overexpression, purification and characterization of functional calf purine nucleoside phosphorylase (PNP). Protein Expression and Purification, 2008, 61, 122-130.	1.3	12
32	Thermodynamic studies of interactions of calf spleen PNP with acyclic phosphonate inhibitors. Nucleic Acids Symposium Series, 2008, 52, 663-664.	0.3	5
33	Cloning, Expression, Purification, and Some Properties of Calf Purine Nucleoside Phosphorylase. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 855-859.	1.1	3
34	Folding and unfolding of a non-fluorescent mutant of green fluorescent protein. Journal of Physics Condensed Matter, 2007, 19, 285223.	1.8	20
35	Kinetics of Binding of Multisubstrate Analogue Inhibitor (2-Amino-9-[2-(Phosphonomethoxy)Ethyl]-6-Sulfanylpurine) with Trimeric Purine Nucleoside Phosphorylase. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 969-974.	1.1	0
36	Probing the mechanism of purine nucleoside phosphorylase by steady-state kinetic studies and ligand binding characterization determined by fluorimetric titrations. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 887-902.	2.3	25

#	Article	IF	CITATIONS
37	KINETIC PROPERTIES OF CELLULOMONAS SP. PURINE NUCLEOSIDE PHOSPHORYLASE WITH TYPICAL AND NON-TYPICAL SUBSTRATES: IMPLICATIONS FOR THE REACTION MECHANISM. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 471-476.	1.1	0
38	Crystal Structure of Calf Spleen Purine Nucleoside Phosphorylase with Two Full Trimers in the Asymmetric Unit: Important Implications for the Mechanism of Catalysis. Journal of Molecular Biology, 2004, 342, 1015-1032.	4.2	25
39	Interactions of Trimeric Purine Nucleoside Phosphorylases with Ground State Analogues—Calorimetric and Fluorimetric Studies. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1695-1698.	1.1	9
40	Open and closed conformation of the E. coli purine nucleoside phosphorylase active center and implications for the catalytic mechanism. Journal of Molecular Biology, 2002, 315, 351-371.	4.2	70
41	Purine nucleoside phosphorylase from Cellulomonas sp.: physicochemical properties and binding of substrates determined by ligand-dependent enhancement of enzyme intrinsic fluorescence, and by protective effects of ligands on thermal inactivation of the enzyme. BBA - Proteins and Proteomics, 2002. 1597. 320-334.	2.1	20
42	Crystal structure of the purine nucleoside phosphorylase (PNP) from Cellulomonas sp. and its implication for the mechanism of trimeric PNPs. Journal of Molecular Biology, 1999, 294, 1239-1255.	4.2	63
43	cellulomonas sp. Purine Nucleoside Phosphorylase (PNP). Advances in Experimental Medicine and Biology, 1998, , 259-264.	1.6	9
44	Nicotinamide Riboside, an Unusual, Non-Typical, Substrate of Purified Purine-Nucleoside Phosphorylases. FEBS Journal, 1997, 243, 408-414.	0.2	32