## Diana Costa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4813047/publications.pdf Version: 2024-02-01



DIANA COSTA

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Changes in Hydration of Lanthanide lons on Binding to DNA in Aqueous Solution. Langmuir, 2005, 21, 10492-10496.                                                                                                                  | 3.5  | 68        |
| 2  | Interaction between Covalent DNA Gels and a Cationic Surfactant. Biomacromolecules, 2006, 7, 1090-1095.                                                                                                                          | 5.4  | 57        |
| 3  | Responsive Polymer Gels:  Double-Stranded versus Single-Stranded DNA. Journal of Physical Chemistry<br>B, 2007, 111, 10886-10896.                                                                                                | 2.6  | 47        |
| 4  | Cyclodextrin-based delivery systems for in vivo-tested anticancer therapies. Drug Delivery and Translational Research, 2021, 11, 49-71.                                                                                          | 5.8  | 46        |
| 5  | Effect of Additives on Swelling of Covalent DNA Gelsâ€. Journal of Physical Chemistry B, 2007, 111, 8444-8452.                                                                                                                   | 2.6  | 44        |
| 6  | Methods to improve the immunogenicity of plasmid DNA vaccines. Drug Discovery Today, 2021, 26, 2575-2592.                                                                                                                        | 6.4  | 42        |
| 7  | Gel Network Photodisruption: A New Strategy for the Codelivery of Plasmid DNA and Drugs. Langmuir, 2011, 27, 13780-13789.                                                                                                        | 3.5  | 41        |
| 8  | Nanotechnological breakthroughs in the development of topical phytocompounds-based formulations. International Journal of Pharmaceutics, 2019, 572, 118787.                                                                      | 5.2  | 41        |
| 9  | Topical Minoxidil-Loaded Nanotechnology Strategies for Alopecia. Cosmetics, 2020, 7, 21.                                                                                                                                         | 3.3  | 38        |
| 10 | Swelling behavior of a new biocompatible plasmid DNA hydrogel. Colloids and Surfaces B:<br>Biointerfaces, 2012, 92, 106-112.                                                                                                     | 5.0  | 29        |
| 11 | Rhodamine based plasmid DNA nanoparticles for mitochondrial gene therapy. Colloids and Surfaces B:<br>Biointerfaces, 2014, 121, 129-140.                                                                                         | 5.0  | 28        |
| 12 | Mitochondrial Gene Therapy: Advances in Mitochondrial Gene Cloning, Plasmid Production, and<br>Nanosystems Targeted to Mitochondria. Molecular Pharmaceutics, 2017, 14, 626-638.                                                 | 4.6  | 28        |
| 13 | Cancer gene therapy mediated by RALA/plasmid DNA vectors: Nitrogen to phosphate groups ratio (N/P)<br>as a tool for tunable transfection efficiency and apoptosis. Colloids and Surfaces B: Biointerfaces,<br>2020, 185, 110610. | 5.0  | 26        |
| 14 | Circadian rhythm and disease: Relationship, new insights, and future perspectives. Journal of Cellular<br>Physiology, 2022, 237, 3239-3256.                                                                                      | 4.1  | 26        |
| 15 | Swelling properties of cross-linked DNA gels. Advances in Colloid and Interface Science, 2010, 158, 21-31.                                                                                                                       | 14.7 | 25        |
| 16 | Polyethylenimine coated plasmid DNA–surfactant complexes as potential gene delivery systems.<br>Colloids and Surfaces B: Biointerfaces, 2015, 133, 156-163.                                                                      | 5.0  | 25        |
| 17 | Finding the ideal polyethylenimine-plasmid DNA system for co-delivery of payloads in cancer therapy.<br>Colloids and Surfaces B: Biointerfaces, 2018, 170, 627-636.                                                              | 5.0  | 25        |
| 18 | Optimization of peptide-plasmid DNA vectors formulation for gene delivery in cancer therapy exploring design of experiments. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110417.                                          | 5.0  | 25        |

DIANA COSTA

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Stimuli-responsive polyamine-DNA blend nanogels for co-delivery in cancer therapy. Colloids and Surfaces B: Biointerfaces, 2015, 132, 194-201.                                                                             | 5.0  | 21        |
| 20 | Does cation dehydration drive the binding of metal ions to polyelectrolytes in water? What we can<br>learn from the behaviour of aluminium(iii) and chromium(iii). Physical Chemistry Chemical Physics,<br>2012, 14, 7950. | 2.8  | 19        |
| 21 | Plasmid DNA microgels for drug/gene co-delivery: A promising approach for cancer therapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 442, 181-190.                                            | 4.7  | 19        |
| 22 | Methotrexate-plasmid DNA polyplexes for cancer therapy: Characterization, cancer cell targeting ability and tuned in vitro transfection. Journal of Molecular Liquids, 2019, 292, 111391.                                  | 4.9  | 19        |
| 23 | A co-delivery platform based on plasmid DNA peptide-surfactant complexes: formation,<br>characterization and release behavior. Colloids and Surfaces B: Biointerfaces, 2019, 178, 430-438.                                 | 5.0  | 19        |
| 24 | Plasmid DNA Microgels for a Therapeutical Strategy Combining the Delivery of Genes and Anticancer<br>Drugs. Macromolecular Bioscience, 2012, 12, 1243-1252.                                                                | 4.1  | 18        |
| 25 | Some novel aspects of DNA physical and chemical gels. Arkivoc, 2006, 2006, 161-172.                                                                                                                                        | 0.5  | 17        |
| 26 | Cross-linked DNA gels: Disruption and release properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 354, 28-33.                                                                              | 4.7  | 16        |
| 27 | Plasmid DNA nanogels as photoresponsive materials for multifunctional bio-applications. Journal of Biotechnology, 2015, 202, 98-104.                                                                                       | 3.8  | 16        |
| 28 | Plasmid DNA hydrogels for biomedical applications. Advances in Colloid and Interface Science, 2014, 205, 257-264.                                                                                                          | 14.7 | 15        |
| 29 | Light triggered release of solutes from covalent DNA gels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 391, 80-87.                                                                             | 4.7  | 13        |
| 30 | Design of Experiments to Achieve an Efficient Chitosan-Based DNA Vaccine Delivery System.<br>Pharmaceutics, 2021, 13, 1369.                                                                                                | 4.5  | 13        |
| 31 | Physicochemical characterization and targeting performance of triphenylphosphonium nano-polyplexes. Journal of Molecular Liquids, 2020, 316, 113873.                                                                       | 4.9  | 12        |
| 32 | Using lanthanides as probes for polyelectrolyte–metal ion interactions. Hydration changes on<br>binding of trivalent cations to nucleotides and nucleic acids. Chemical Physics, 2008, 352, 241-248.                       | 1.9  | 11        |
| 33 | Design of experiments to select triphenylphosphonium-polyplexes with suitable physicochemical properties for mitochondrial gene therapy. Journal of Molecular Liquids, 2020, 302, 112488.                                  | 4.9  | 11        |
| 34 | Development of Peptide-Based Nanoparticles for Mitochondrial Plasmid DNA Delivery. Polymers, 2021,<br>13, 1836.                                                                                                            | 4.5  | 11        |
| 35 | Exploring the link between chronobiology and drug delivery: effects on cancer therapy. Journal of Molecular Medicine, 2021, 99, 1349-1371.                                                                                 | 3.9  | 11        |
| 36 | Polymer-peptide ternary systems as a tool to improve the properties of plasmid DNA vectors in gene delivery. Journal of Molecular Liquids, 2020, 309, 113157.                                                              | 4.9  | 9         |

DIANA COSTA

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Synthesis and Characterization of Mannosylated Formulations to Deliver a Minicircle DNA Vaccine.<br>Pharmaceutics, 2021, 13, 673.                                                              | 4.5 | 9         |
| 38 | Development of mitochondrial targeting plasmid DNA nanoparticles: Characterization and in vitro studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 480, 287-295. | 4.7 | 7         |
| 39 | Targeting of Cellular Organelles by Fluorescent Plasmid DNA Nanoparticles. Biomacromolecules, 2017, 18, 2928-2936.                                                                             | 5.4 | 7         |
| 40 | Peptides vs. Polymers: Searching for the Most Efficient Delivery System for Mitochondrial Gene<br>Therapy. Pharmaceutics, 2022, 14, 757.                                                       | 4.5 | 6         |
| 41 | Enhancement of a biotechnological platform for the purification and delivery of a human papillomavirus supercoiled plasmid DNA vaccine. New Biotechnology, 2020, 59, 1-9.                      | 4.4 | 5         |
| 42 | Development of Tailor-Made Dendrimer Ternary Complexes for Drug/Gene Co-Delivery in Cancer.<br>Pharmaceutics, 2021, 13, 1256.                                                                  | 4.5 | 5         |
| 43 | Recent advances in peptide-targeted micelleplexes: Current developments and future perspectives.<br>International Journal of Pharmaceutics, 2021, 597, 120362.                                 | 5.2 | 4         |
| 44 | A new insight in gellan microspheres application to capture a plasmid DNA vaccine from an Escherichia coli lysate. Separation and Purification Technology, 2021, 274, 119013.                  | 7.9 | 3         |
| 45 | The Influence of Circadian Rhythm on Cancer Cells Targeting and Transfection Efficiency of a Polycation-Drug/Gene Delivery Vector. Polymers, 2022, 14, 681.                                    | 4.5 | 3         |
| 46 | Maximization of the Minicircle DNA Vaccine Production Expressing SARS-CoV-2 RBD. Biomedicines, 2022, 10, 990.                                                                                  | 3.2 | 2         |
| 47 | DNA-Based Hydrogels: An Approach for Multifunctional Bioapplications. Gels Horizons: From Science<br>To Smart Materials, 2018, , 339-356.                                                      | 0.3 | 1         |
| 48 | Conception of Plasmid DNA and Polyethylenimine Delivery Systems with Potential Application in Field.<br>Methods in Molecular Biology, 2021, 2197, 271-284.                                     | 0.9 | 1         |
| 49 | Cross-Linked DNA Gels and Gel Particles. , 0, , 353-365.                                                                                                                                       |     | 0         |
| 50 | Modeling the Surfactant Uptake in Cross-Linked DNA Gels. Journal of Dispersion Science and Technology, 2009, 30, 954-960.                                                                      | 2.4 | 0         |
| 51 | Future perspectives of biological macromolecules in biomedicine. , 2022, , 607-632.                                                                                                            |     | 0         |