
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4812875/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sensitivity of SARS-CoV-2 Life Cycle to IFN Effects and ACE2 Binding Unveiled with a Stochastic Model. Viruses, 2022, 14, 403.	1.5	3
2	Space and Genotype-Dependent Virus Distribution during Infection Progression. Mathematics, 2022, 10, 96.	1.1	2
3	A Mathematical Model of HIF-1 Regulated Cellular Energy Metabolism. Vietnam Journal of Mathematics, 2021, 49, 119-141.	0.4	3
4	Corrigendum to: Mathematical immunology: from phenomenological to multiphysics modelling. Russian Journal of Numerical Analysis and Mathematical Modelling, 2021, 36, 55-55.	0.2	0
5	Markov Chain-Based Stochastic Modelling of HIV-1 Life Cycle in a CD4 T Cell. Mathematics, 2021, 9, 2025.	1.1	11
6	Intracellular Life Cycle Kinetics of SARS-CoV-2 Predicted Using Mathematical Modelling. Viruses, 2021, 13, 1735.	1.5	15
7	Examining the cooperativity mode of antibody and CD8+ T cell immune responses for vaccinology. Trends in Immunology, 2021, 42, 852-855.	2.9	7
8	Existence and Dynamics of Strains in a Nonlocal Reaction-Diffusion Model of Viral Evolution. SIAM Journal on Applied Mathematics, 2021, 81, 107-128.	0.8	5
9	Frontiers in mathematical modelling of the lipid metabolism under normal conditions and its alterations in heart diseases. Russian Journal of Numerical Analysis and Mathematical Modelling, 2021, 36, 255-266.	0.2	0
10	Mathematical Modeling of Lymph Node Drainage Function by Neural Network. Mathematics, 2021, 9, 3093.	1.1	8
11	Viral Infection Dynamics Model Based on a Markov Process with Time Delay between Cell Infection and Progeny Production. Mathematics, 2020, 8, 1207.	1.1	7
12	Graph Theory for Modeling and Analysis of the Human Lymphatic System. Mathematics, 2020, 8, 2236.	1.1	11
13	â€~Rinse and Replace': Boosting T Cell Turnover To Reduce HIV-1 Reservoirs. Trends in Immunology, 2020, 41, 466-480.	2.9	26
14	Genotype-dependent virus distribution and competition of virus strains. Mathematics and Mechanics of Complex Systems, 2020, 8, 101-126.	0.5	7
15	Application of the Global Optimization Methods for Solving the Parameter Estimation Problem in Mathematical Immunology. Lecture Notes in Computer Science, 2020, , 203-209.	1.0	0
16	Topological Structure and Robustness of the Lymph Node Conduit System. Cell Reports, 2020, 30, 893-904.e6.	2.9	35
17	Modeling of the HIV-1 Life Cycle in Productively Infected Cells to Predict Novel Therapeutic Targets. Pathogens, 2020, 9, 255.	1.2	18
18	Numbers Game and Immune Geography as Determinants of Coronavirus Pathogenicity. Frontiers in Cellular and Infection Microbiology, 2020, 10, 559209.	1.8	6

#	Article	IF	CITATIONS
19	Nonlocal Reaction–Diffusion Model of Viral Evolution: Emergence of Virus Strains. Mathematics, 2020, 8, 117.	1.1	10
20	From the guest editors: "Delay Differential Equations: Theory, Applications and New Trends". Discrete and Continuous Dynamical Systems - Series S, 2020, 13, i-iv.	0.6	0
21	Mathematical immunology: from phenomenological to multiphysics modelling. Russian Journal of Numerical Analysis and Mathematical Modelling, 2020, 35, 203-213.	0.2	3
22	Bistability analysis of virus infection models with time delays. Discrete and Continuous Dynamical Systems - Series S, 2020, 13, 2385-2401.	0.6	8
23	Numerical steady state analysis of the Marchuk–Petrov model of antiviral immune response. Russian Journal of Numerical Analysis and Mathematical Modelling, 2020, 35, 95-110.	0.2	2
24	Prediction of PD-L1 inhibition effects for HIV-infected individuals. PLoS Computational Biology, 2019, 15, e1007401.	1.5	10
25	Mathematical Modeling of the Intracellular Regulation of Immune Processes. Molecular Biology, 2019, 53, 718-731.	0.4	2
26	Spatial Lymphocyte Dynamics in Lymph Nodes Predicts the Cytotoxic T Cell Frequency Needed for HIV Infection Control. Frontiers in Immunology, 2019, 10, 1213.	2.2	7
27	Linking Cell Dynamics With Gene Coexpression Networks to Characterize Key Events in Chronic Virus Infections. Frontiers in Immunology, 2019, 10, 1002.	2.2	7
28	Systems analysis reveals complex biological processes during virus infection fate decisions. Genome Research, 2019, 29, 907-919.	2.4	21
29	Spatially resolved modelling of immune responses following a multiscale approach: from computational implementation to quantitative predictions. Russian Journal of Numerical Analysis and Mathematical Modelling, 2019, 34, 253-260.	0.2	3
30	Methods of Potential Theory in a Filtration Problem for a Viscous Fluid. Differential Equations, 2019, 55, 1182-1197.	0.1	4
31	Modelling the dynamics of virus infection and immune response in space and time. International Journal of Parallel, Emergent and Distributed Systems, 2019, 34, 341-355.	0.7	21
32	Editorial: Mathematical Modeling of the Immune System in Homeostasis, Infection and Disease. Frontiers in Immunology, 2019, 10, 2944.	2.2	11
33	Delay reaction-diffusion equation for infection dynamics. Discrete and Continuous Dynamical Systems - Series B, 2019, 24, 2073-2091.	0.5	7
34	Hybrid models in biomedical applications. Computer Research and Modeling, 2019, 11, 287-309.	0.2	0
35	Tensor based approach to the numerical treatment of the parameter estimation problems in mathematical immunology. Journal of Inverse and Ill-Posed Problems, 2018, 26, 51-66.	0.5	10
36	Reaction–Diffusion Equations in Immunology. Computational Mathematics and Mathematical Physics, 2018, 58, 1967-1976.	0.2	5

#	Article	IF	CITATIONS
37	Integrative Computational Modeling of the Lymph Node Stromal Cell Landscape. Frontiers in Immunology, 2018, 9, 2428.	2.2	27
38	Optimal Disturbances of Bistable Time-Delay Systems Modeling Virus Infections. Doklady Mathematics, 2018, 98, 313-316.	0.1	5
39	Modelling lymph flow in the lymphatic system: from 0D to 1D spatial resolution. Mathematical Modelling of Natural Phenomena, 2018, 13, 45.	0.9	8
40	Interplay between reaction and diffusion processes in governing the dynamics of virus infections. Journal of Theoretical Biology, 2018, 457, 221-236.	0.8	14
41	Basic Principles of Building aÂMathematical Model of Immune Response. , 2018, , 15-34.		Ο
42	Multi-scale and Integrative Modelling Approaches. , 2018, , 221-242.		2
43	Parameter Estimation and Model Selection. , 2018, , 35-95.		1
44	Developing Computational Geometry and Network Graph Models of Human Lymphatic System. Computation, 2018, 6, 1.	1.0	33
45	Mathematical Immunology of Virus Infections. , 2018, , .		42
46	Spatial Modelling Using Reaction–Diffusion Systems. , 2018, , 195-219.		0
47	Modelling of Experimental Infections. , 2018, , 97-152.		Ο
48	Modelling of Human Infections. , 2018, , 153-194.		0
49	Principles of Virus–Host Interaction. , 2018, , 1-14.		1
50	Graph Theory-Based Analysis of the Lymph Node Fibroblastic Reticular Cell Network. Methods in Molecular Biology, 2017, 1591, 43-57.	0.4	7
51	Modelling Stochastic and Deterministic Behaviours in Virus Infection Dynamics. Mathematical Modelling of Natural Phenomena, 2017, 12, 63-77.	0.9	9
52	Maximum response perturbation-based control of virus infection model with time-delays. Russian Journal of Numerical Analysis and Mathematical Modelling, 2017, 32, .	0.2	6
53	Modelling the structural organization of lymph nodes. , 2017, , .		1
54	Hybrid approach to model the spatial regulation of T cell responses. BMC Immunology, 2017, 18, 29.	0.9	29

#	Article	IF	CITATIONS
55	Data-driven modelling of the FRC network for studying the fluid flow in the conduit system. Engineering Applications of Artificial Intelligence, 2017, 62, 341-349.	4.3	17
56	Critical Issues in Modelling Lymph Node Physiology. Computation, 2017, 5, 3.	1.0	10
5 7	Towards a Multiscale Model of Acute HIV Infection. Computation, 2017, 5, 6.	1.0	17
58	On the Potential for Multiscale Oscillatory Behavior in HIV. , 2017, , 897-924.		0
59	Topological Small-World Organization of the Fibroblastic Reticular Cell Network Determines Lymph Node Functionality. PLoS Biology, 2016, 14, e1002515.	2.6	96
60	Spatiotemporal Dynamics of Virus Infection Spreading in Tissues. PLoS ONE, 2016, 11, e0168576.	1.1	39
61	Mathematics of Pharmacokinetics and Pharmacodynamics: Diversity of Topics, Models and Methods. Mathematical Modelling of Natural Phenomena, 2016, 11, 1-8.	0.9	1
62	A drug pharmacodynamics and pharmacokinetics based approach towards stabilization of HIV infection dynamics. Russian Journal of Numerical Analysis and Mathematical Modelling, 2015, 30, .	0.2	2
63	Modelling the FRC network of lymph node. , 2015, , .		Ο
64	Computational Approach to 3D Modeling of the Lymph Node Geometry. Computation, 2015, 3, 222-234.	1.0	35
65	Understanding Experimental LCMV Infection of Mice: The Role of Mathematical Models. Journal of Immunology Research, 2015, 2015, 1-10.	0.9	18
66	An extremal shift method for control of HIV infection dynamics. Russian Journal of Numerical Analysis and Mathematical Modelling, 2015, 30, .	0.2	7
67	Mathematical modelling of the within-host HIV quasispecies dynamics in response to antiviral treatment. Russian Journal of Numerical Analysis and Mathematical Modelling, 2015, 30, .	0.2	3
68	Mathematical models for CFSE labelled lymphocyte dynamics: asymmetry and time-lag in division. Journal of Mathematical Biology, 2014, 69, 1547-1583.	0.8	21
69	Stochastic modeling of the impact of random forcing on persistent hepatitis B virus infection. Mathematics and Computers in Simulation, 2014, 96, 54-65.	2.4	19
70	Mathematical model of the Tat-Rev regulation of HIV-1 replication in an activated cell predicts the existence of oscillatory dynamics in the synthesis of viral components. BMC Genomics, 2014, 15, S1.	1.2	25
71	Pathogenesis and Treatment of HIV Infection: The Cellular, the Immune System and the Neuroendocrine Systems Perspective. International Reviews of Immunology, 2013, 32, 282-306.	1.5	14
72	Asymmetry of Cell Division in CFSE-Based Lymphocyte Proliferation Analysis. Frontiers in Immunology, 2013, 4, 264.	2.2	34

#	Article	IF	CITATIONS
73	RNAtips: analysis of temperature-induced changes of RNA secondary structure. Nucleic Acids Research, 2013, 41, W486-W491.	6.5	25
74	Critical Issues in the Numerical Treatment of the Parameter Estimation Problems in Immunology. Journal of Computational Mathematics, 2012, 30, 59-79.	0.2	2
75	Preface. Distributed Parameter Systems in Immunology. Mathematical Modelling of Natural Phenomena, 2012, 7, 1-3.	0.9	1
76	A global "imaging'' view on systems approaches in immunology. European Journal of Immunology, 202 42, 3116-3125.	12. 1.6	32
77	Human Immunodeficiency Virus Infection : from Biological Observations to Mechanistic Mathematical Modelling. Mathematical Modelling of Natural Phenomena, 2012, 7, 78-104.	0.9	43
78	Simulation of the interferon-mediated protective field in lymphoid organs with their spatial and functional organization taken into consideration. Doklady Biological Sciences, 2011, 439, 194-6.	0.2	2
79	A new model for the estimation of cell proliferation dynamics using CFSE data. Journal of Immunological Methods, 2011, 373, 143-160.	0.6	38
80	Estimation of Cell Proliferation Dynamics Using CFSE Data. Bulletin of Mathematical Biology, 2011, 73, 116-150.	0.9	62
81	Antigen-stimulated CD4 T-cell expansion is inversely and log-linearly related to precursor number. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3312-3317.	3.3	35
82	Reaction-Diffusion Modelling of Interferon Distribution in Secondary Lymphoid Organs. Mathematical Modelling of Natural Phenomena, 2011, 6, 13-26.	0.9	21
83	Feedback regulation of proliferation vs. differentiation rates explains the dependence of CD4 T-cell expansion on precursor number. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3318-3323.	3.3	44
84	Fitness Ranking of Individual Mutants Drives Patterns of Epistatic Interactions in HIV-1. PLoS ONE, 2011, 6, e18375.	1.1	22
85	Research Priorities for HIV/M. tuberculosis Co-Infection. The Open Infectious Diseases Journal, 2011, 5, 14-20.	0.6	0
86	A Systems Immunology Approach to Plasmacytoid Dendritic Cell Function in Cytopathic Virus Infections. PLoS Pathogens, 2010, 6, e1001017.	2.1	25
87	Mathematical modelling of infectious diseases. British Medical Bulletin, 2009, 92, 33-42.	2.7	131
88	Distributed parameter identification for a label-structured cell population dynamics model using CFSE histogram time-series data. Journal of Mathematical Biology, 2009, 59, 581-603.	0.8	32
89	Some aspects of causal & neutral equations used in modelling. Journal of Computational and Applied Mathematics, 2009, 229, 335-349.	1.1	6
90	Maintenance of HIV-Specific Central and Effector Memory CD4 and CD8 T Cells Requires Antigen Persistence. AIDS Research and Human Retroviruses, 2007, 23, 549-553.	0.5	12

#	Article	IF	CITATIONS
91	Rival approaches to mathematical modelling in immunology. Journal of Computational and Applied Mathematics, 2007, 205, 669-686.	1.1	46
92	Numerical modelling of label-structured cell population growth using CFSE distribution data. Theoretical Biology and Medical Modelling, 2007, 4, 26.	2.1	54
93	Computational analysis of CFSE proliferation assay. Journal of Mathematical Biology, 2006, 54, 57-89.	0.8	37
94	A Mathematical Approach for Optimizing Dendritic Cell-Based Immunotherapy. , 2005, 109, 019-034.		5
95	Understanding Complex Regulatory Systems: Integrating Molecular Biology and Systems Analysis. Transfusion Medicine and Hemotherapy, 2005, 32, 304-321.	0.7	9
96	Computational modelling with functional differential equations: Identification, selection, and sensitivity. Applied Numerical Mathematics, 2005, 53, 107-129.	1.2	24
97	Numerical bifurcation analysis of immunological models with time delays. Journal of Computational and Applied Mathematics, 2005, 184, 165-176.	1.1	13
98	Adjoint equations and analysis of complex systems: Application to virus infection modelling. Journal of Computational and Applied Mathematics, 2005, 184, 177-204.	1.1	18
99	Computational approaches to parameter estimation and model selection in immunology. Journal of Computational and Applied Mathematics, 2005, 184, 50-76.	1.1	36
100	A genetic-algorithm approach to simulating human immunodeficiency virus evolution reveals the strong impact of multiply infected cells and recombination. Journal of General Virology, 2005, 86, 3109-3118.	1.3	50
101	Underwhelming the Immune Response: Effect of Slow Virus Growth on CD8 + -T-Lymphocyte Responses. Journal of Virology, 2004, 78, 2247-2254.	1.5	99
102	Determining control parameters for dendritic cell-cytotoxic T lymphocyte interaction. European Journal of Immunology, 2004, 34, 2407-2418.	1.6	51
103	Modelling the Dynamics of LCMV Infection in Mice: II. Compartmental Structure and Immunopathology. Journal of Theoretical Biology, 2003, 221, 349-378.	0.8	20
104	Dendritic Cell Homeostasis in the Regulation of Self-Reactivity. Current Pharmaceutical Design, 2003, 9, 221-231.	0.9	17
105	Multiply infected spleen cells in HIV patients. Nature, 2002, 418, 144-144.	13.7	381
106	Low level viral persistence after infection with LCMV: a quantitative insight through numerical bifurcation analysis. Mathematical Biosciences, 2001, 173, 1-23.	0.9	30
107	Predicting the dynamics of antiviral cytotoxic T-cell memory in response to different stimuli: Cell population structure and protective function. Immunology and Cell Biology, 2001, 79, 74-86.	1.0	11
108	Direct quantitation of rapid elimination of viral antigen-positive lymphocytes by antiviral CD8+ T cellsin vivo. European Journal of Immunology, 2000, 30, 1356-1363.	1.6	78

#	Article	IF	CITATIONS
109	Structured Population Models, Conservation Laws, and Delay Equations. Journal of Differential Equations, 2000, 168, 212-237.	1.1	62
110	Numerical modelling in biosciences using delay differential equations. Journal of Computational and Applied Mathematics, 2000, 125, 183-199.	1.1	262
111	The Impact of Variation in the Number of CD8+T-Cell Precursors on the Outcome of Virus Infection. Cellular Immunology, 1998, 189, 67-73.	1.4	46
112	Modelling the Dynamics of LCMV Infection in Mice: Conventional and Exhaustive CTL Responses. Journal of Theoretical Biology, 1998, 192, 283-308.	0.8	78
113	Mathematical Model of Antiviral Immune Response III. Influenza A Virus Infection. Journal of Theoretical Biology, 1994, 167, 323-360.	0.8	141