Loydie Anne Jerome-Majewska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4812088/publications.pdf Version: 2024-02-01

Loydie Anne

#	Article	IF	CITATIONS
1	The imperative for scientific societies to change the face of academia: Recommendations for immediate action. Anatomical Record, 2022, 305, 1019-1031.	1.4	5
2	TMED2 binding restricts SMO to the ER and Golgi compartments. PLoS Biology, 2022, 20, e3001596.	5.6	7
3	Editorial from the new Editors-in-Chief of â€~Differentiation'. Differentiation, 2022, 124, 60.	1.9	0
4	The Imperative for Scientific Societies to Change the Face of Academia: Recommendations for Immediate Action. FASEB Journal, 2022, 36, .	0.5	0
5	Effects of spliceosomal mutations on brain patterning and morphogenesis. FASEB Journal, 2022, 36, .	0.5	0
6	<i>Snrpb</i> is required in murine neural crest cells for proper splicing and craniofacial morphogenesis. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	9
7	Mutation in <i>Eftud2</i> causes craniofacial defects in mice via mis-splicing of <i>Mdm2</i> and increased P53. Human Molecular Genetics, 2021, 30, 739-757.	2.9	20
8	Spliceosomopathies and neurocristopathies: Two sides of the same coin?. Developmental Dynamics, 2020, 249, 924-945.	1.8	50
9	Deletion of Mouse <i>Sf3b4</i> in Neural Crest Cells Causes Craniofacial Abnormalities. FASEB Journal, 2020, 34, 1-1.	0.5	0
10	Loss of function mutation of Eftud2, the gene responsible for mandibulofacial dysostosis with microcephaly (MFDM), leads to pre-implantation arrest in mouse. PLoS ONE, 2019, 14, e0219280.	2.5	19
11	Snap29 mutant mice recapitulate neurological and ophthalmological abnormalities associated with 22q11 and CEDNIK syndrome. Communications Biology, 2019, 2, 375.	4.4	10
12	Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation. Genome Biology, 2019, 20, 171.	8.8	69
13	Control of anterior <scp>GR</scp> adient 2 (<scp>AGR</scp> 2) dimerization links endoplasmic reticulum proteostasis to inflammation. EMBO Molecular Medicine, 2019, 11, .	6.9	48
14	Transmembrane emp24 domain proteins in development and disease Genetical Research, 2019, 101, e14.	0.9	41
15	Mouse models of human craniofacials spliceosomopathies: Are they neurocristopathies?. FASEB Journal, 2019, 33, 72.1.	0.5	0
16	Low Dietary Folate Interacts with MTHFD1 Synthetase Deficiency in Mice, a Model for the R653Q Variant, to Increase Incidence of Developmental Delays and Defects. Journal of Nutrition, 2018, 148, 501-509.	2.9	8
17	TMED2/emp24 is required in both the chorion and the allantois for placental labyrinth layer development. Developmental Biology, 2018, 444, 20-32.	2.0	13
18	TMED2 is Required in both the Chorion and Placenta for Placental Labyrinth Layer Development. FASEB Journal, 2018, 32, 779.4.	0.5	0

Loydie Anne

#	Article	IF	CITATIONS
19	Non-alcoholic fatty liver disease in mice with heterozygous mutation in TMED2. PLoS ONE, 2017, 12, e0182995.	2.5	29
20	Somatic overgrowth associated with homozygous mutations in bothMAN1B1andSEC23A. Journal of Physical Education and Sports Management, 2016, 2, a000737.	1.2	18
21	Moderate folic acid supplementation and MTHFD1-synthetase deficiency in mice, a model for the R653Q variant, result in embryonic defects and abnormal placental development. American Journal of Clinical Nutrition, 2016, 104, 1459-1469.	4.7	31
22	Diagnosis of Van den Ende–Gupta syndrome: Approach to the Marden–Walkerâ€ike spectrum of disorders. American Journal of Medical Genetics, Part A, 2016, 170, 2310-2321.	1.2	9
23	ExÂvivo culture of pre-placental tissues reveals that the allantois is required for maintained expression of Gcm1 and Tpbpα. Placenta, 2016, 47, 12-23.	1.5	3
24	MTHFD1 formyltetrahydrofolate synthetase deficiency, a model for the MTHFD1 R653Q variant, leads to congenital heart defects in mice. Birth Defects Research Part A: Clinical and Molecular Teratology, 2015, 103, 1031-1038.	1.6	14
25	TMED2 is Sufficient for Trophoblast Fusion. FASEB Journal, 2015, 29, LB34.	0.5	0
26	Disrupted auto-regulation of the spliceosomal gene SNRPB causes cerebro–costo–mandibular syndrome. Nature Communications, 2014, 5, 4483.	12.8	57
27	The Mmachc gene is required for pre-implantation embryogenesis in the mouse. Molecular Genetics and Metabolism, 2014, 112, 198-204.	1.1	17
28	During Embryogenesis, <i>Esrp1</i> Expression Is Restricted to a Subset of Epithelial Cells and Is Associated With Splicing of a Number of Developmentally Important Genes. Developmental Dynamics, 2013, 242, 281-290.	1.8	27
29	Hemizygous mutations in SNAP29 unmask autosomal recessive conditions and contribute to atypical findings in patients with 22q11.2DS. Journal of Medical Genetics, 2013, 50, 80-90.	3.2	104
30	Vitamin B12 Metabolism during Pregnancy and in Embryonic Mouse Models. Nutrients, 2013, 5, 3531-3550.	4.1	18
31	The methylmalonic aciduria related genes, Mmaa, Mmab, and Mut, are broadly expressed in placental and embryonic tissues during mouse organogenesis. Molecular Genetics and Metabolism, 2012, 107, 368-374.	1.1	2
32	Notch1and the activated NOTCH1 intracellular domain are expressed in differentiated trophoblast cells. Cell Biology International, 2011, 35, 443-447.	3.0	5
33	Expression of Mmachc and Mmadhc during mouse organogenesis. Molecular Genetics and Metabolism, 2011, 103, 401-405.	1.1	10
34	High intake of folic acid disrupts embryonic development in mice. Birth Defects Research Part A: Clinical and Molecular Teratology, 2011, 91, 8-19.	1.6	101
35	Mutations in SCARF2 Are Responsible for Van Den Ende-Gupta Syndrome. American Journal of Human Genetics, 2010, 87, 553-559.	6.2	52
36	Alternative splicing is frequent during early embryonic development in mouse. BMC Genomics, 2010, 11, 399.	2.8	92

Loydie Anne

#	Article	IF	CITATIONS
37	The trafficking protein Tmed2/p24β1 is required for morphogenesis of the mouse embryo and placenta. Developmental Biology, 2010, 341, 154-166.	2.0	67
38	Methylenetetrahydrofolate reductase deficiency and low dietary folate increase embryonic delay and placental abnormalities in mice. Birth Defects Research Part A: Clinical and Molecular Teratology, 2009, 85, 531-541.	1.6	60
39	Tbx3, the ulnar-mammary syndrome gene, andTbx2interact in mammary gland development through a p19Arf/p53-independent pathway. Developmental Dynamics, 2005, 234, 922-933.	1.8	72
40	Tbx1 is required for proper neural crest migration and to stabilize spatial patterns during middle and inner ear development. Mechanisms of Development, 2005, 122, 199-212.	1.7	65
41	The del22q11.2 candidate gene Tbx1 regulates branchiomeric myogenesis. Human Molecular Genetics, 2004, 13, 2829-2840.	2.9	230
42	Mammary gland, limb and yolk sac defects in mice lackingTbx3,the gene mutated in human ulnar mammary syndrome. Development (Cambridge), 2003, 130, 2263-2273.	2.5	252
43	Aortic arch and pharyngeal phenotype in the absence of BMP-dependent neural crest in the mouse. Mechanisms of Development, 2002, 119, 127-135.	1.7	46