

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4811898/publications.pdf Version: 2024-02-01

Lui He

#	Article	IF	CITATIONS
1	Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research, 2011, 166, 207-215.	2.5	724
2	Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. Journal of Applied Microbiology, 2009, 107, 1193-1201.	1.4	696
3	Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC - Trends in Analytical Chemistry, 2016, 85, 73-82.	5.8	334
4	Surfaceâ€Enhanced Raman Spectroscopy for the Chemical Analysis of Food. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 317-328.	5.9	275
5	Detection of Melamine in Gluten, Chicken Feed, and Processed Foods Using Surface Enhanced Raman Spectroscopy and HPLC. Journal of Food Science, 2008, 73, T129-34.	1.5	257
6	Fabrication and characterization of protein-phenolic conjugate nanoparticles for co-delivery of curcumin and resveratrol. Food Hydrocolloids, 2018, 79, 450-461.	5.6	150
7	Development of a single aptamer-based surface enhanced Raman scattering method for rapid detection of multiple pesticides. Analyst, The, 2014, 139, 1895-1901.	1.7	132
8	Use of a Fractal-like Gold Nanostructure in Surface-Enhanced Raman Spectroscopy for Detection of Selected Food Contaminants. Journal of Agricultural and Food Chemistry, 2008, 56, 9843-9847.	2.4	131
9	A new approach to measure melamine, cyanuric acid, and melamine cyanurate using surface enhanced Raman spectroscopy coupled with gold nanosubstrates. Sensing and Instrumentation for Food Quality and Safety, 2008, 2, 66-71.	1.5	122
10	Recent advance in SERS techniques for food safety and quality analysis: a brief review. Current Opinion in Food Science, 2019, 28, 82-87.	4.1	111
11	High Adsorption of Sulfamethoxazole by an Amine-Modified Polystyrene–Divinylbenzene Resin and Its Mechanistic Insight. Environmental Science & Technology, 2016, 50, 10015-10023.	4.6	108
12	Highly sensitive and selective detection of nitrite ions using Fe3O4@SiO2/Au magnetic nanoparticles by surface-enhanced Raman spectroscopy. Biosensors and Bioelectronics, 2016, 85, 726-733.	5.3	106
13	Real-Time and <i>in Situ</i> Monitoring of Pesticide Penetration in Edible Leaves by Surface-Enhanced Raman Scattering Mapping. Analytical Chemistry, 2016, 88, 5243-5250.	3.2	100
14	Uptake of Gold Nanoparticles by Intestinal Epithelial Cells: Impact of Particle Size on Their Absorption, Accumulation, and Toxicity. Journal of Agricultural and Food Chemistry, 2015, 63, 8044-8049.	2.4	99
15	Analysis of Silver Nanoparticles in Antimicrobial Products Using Surface-Enhanced Raman Spectroscopy (SERS). Environmental Science & Technology, 2015, 49, 4317-4324.	4.6	98
16	Recovery and quantitative detection of thiabendazole on apples using a surface swab capture method followed by surface-enhanced Raman spectroscopy. Food Chemistry, 2014, 148, 42-46.	4.2	94
17	Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization. TrAC - Trends in Analytical Chemistry, 2017, 90, 1-13.	5.8	89
18	Aptamer-based surface-enhanced Raman scattering detection of ricin in liquid foods. Chemical Science, 2011, 2, 1579.	3.7	86

#	Article	IF	CITATIONS
19	Detection of a Foreign Protein in Milk Using Surface-Enhanced Raman Spectroscopy Coupled with Antibody-Modified Silver Dendrites. Analytical Chemistry, 2011, 83, 1510-1513.	3.2	83
20	Rapid Detection of Acetamiprid in Foods using Surfaceâ€Enhanced Raman Spectroscopy (SERS). Journal of Food Science, 2014, 79, T743-7.	1.5	80
21	Effectiveness of Commercial and Homemade Washing Agents in Removing Pesticide Residues on and in Apples. Journal of Agricultural and Food Chemistry, 2017, 65, 9744-9752.	2.4	80
22	Label-free mapping of single bacterial cells using surface-enhanced Raman spectroscopy. Analyst, The, 2016, 141, 1356-1362.	1.7	70
23	Alteration of the Nonsystemic Behavior of the Pesticide Ferbam on Tea Leaves by Engineered Gold Nanoparticles. Environmental Science & Technology, 2016, 50, 6216-6223.	4.6	64
24	In situ SERS detection of multi-class insecticides on plant surfaces. Analytical Methods, 2015, 7, 6325-6330.	1.3	61
25	Production and partial characterization of bacteriocin-like pepitdes by Bacillus licheniformis ZJU12. Microbiological Research, 2006, 161, 321-326.	2.5	59
26	Surfaceâ€enhanced Raman spectroscopy coupled with dendritic silver nanosubstrate for detection of restricted antibiotics. Journal of Raman Spectroscopy, 2010, 41, 739-744.	1.2	59
27	Nanoimprinted Patterned Pillar Substrates for Surface-Enhanced Raman Scattering Applications. ACS Applied Materials & Interfaces, 2015, 7, 22106-22113.	4.0	57
28	A single DNA aptamer functions as a biosensor for ricin. Analyst, The, 2011, 136, 3884.	1.7	56
29	Analysis of multiple pesticide residues in polyphenol-rich agricultural products by UPLC-MS/MS using a modified QuEChERS extraction and dilution method. Food Chemistry, 2019, 274, 452-459.	4.2	54
30	Antifungal mechanisms of ZnO and Ag nanoparticles toSclerotinia homoeocarpa. Nanotechnology, 2017, 28, 155101.	1.3	53
31	Impact of protein-nanoparticle interactions on gastrointestinal fate of ingested nanoparticles: Not just simple protein corona effects. NanoImpact, 2019, 13, 37-43.	2.4	53
32	Recent advances in dual recognition based surface enhanced Raman scattering for pathogenic bacteria detection: A review. Analytica Chimica Acta, 2021, 1157, 338279.	2.6	52
33	Evaluation of the Penetration of Multiple Classes of Pesticides in Fresh Produce Using Surfaceâ€Enhanced Raman Scattering Mapping. Journal of Food Science, 2016, 81, T2891-T2901.	1.5	48
34	Characterization of the Interactions between Titanium Dioxide Nanoparticles and Polymethoxyflavones Using Surface-Enhanced Raman Spectroscopy. Journal of Agricultural and Food Chemistry, 2016, 64, 9436-9441.	2.4	47
35	Applications of surface-enhanced Raman spectroscopy in the analysis of nanoparticles in the environment. Environmental Science: Nano, 2017, 4, 2093-2107.	2.2	47
36	Concentration, detection and discrimination of Bacillus anthracis spores in orange juice using aptamer based surface enhanced Raman spectroscopy. Analyst, The, 2013, 138, 1657.	1.7	46

#	Article	IF	CITATIONS
37	Rapid Detection of Ricin in Milk Using Immunomagnetic Separation Combined with Surfaceâ€Enhanced Raman Spectroscopy. Journal of Food Science, 2011, 76, N49-53.	1.5	45
38	<i>In situ</i> colorimetric detection of glyphosate on plant tissues using cysteamine-modified gold nanoparticles. Analyst, The, 2019, 144, 2017-2025.	1.7	45
39	A simple and rapid method for detecting the pesticide fipronil on egg shells and in liquid eggs by Raman microscopy. Food Control, 2019, 96, 16-21.	2.8	42
40	Rapid concentration detection and differentiation of bacteria in skimmed milk using surface enhanced Raman scattering mapping on 4-mercaptophenylboronic acid functionalized silver dendrites. Analytical and Bioanalytical Chemistry, 2017, 409, 2229-2238.	1.9	41
41	Rapid identification of artificial and natural food colorants with surface enhanced Raman spectroscopy. Food Control, 2018, 92, 267-275.	2.8	41
42	Rapid detection of a foreign protein in milk using IMS–SERS. Journal of Raman Spectroscopy, 2011, 42, 1428-1434.	1.2	40
43	Structural characterisation of partially glycosylated whey protein as influenced by pH and heat using surface-enhanced Raman spectroscopy. Food Chemistry, 2013, 139, 313-319.	4.2	40
44	Surface-enhanced Raman scattering detection of silver nanoparticles in environmental and biological samples. Science of the Total Environment, 2016, 554-555, 246-252.	3.9	37
45	Uptake, Translocation, Metabolism, and Distribution of Glyphosate in Nontarget Tea Plant (<i>Camellia) Tj ETQq1</i>	1.0,7843 2.4	14ggBT /Ov
46	Cysteamineâ€Modified Gold Nanoparticles as a Colorimetric Sensor for the Rapid Detection of Gentamicin. Journal of Food Science, 2018, 83, 1631-1638.	1.5	37
47	Real-Time Monitoring of Pesticide Translocation in Tomato Plants by Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2019, 91, 2093-2099.	3.2	37
48	Innovative sandwich assay with dual optical and SERS sensing mechanisms for bacterial detection. Analytical Methods, 2017, 9, 4732-4739.	1.3	35
49	Characterization of Lactococcus lactis response to ampicillin and ciprofloxacin using surface-enhanced Raman spectroscopy. Analytical and Bioanalytical Chemistry, 2016, 408, 933-941.	1.9	34
50	Alterations in nanoparticle protein corona by biological surfactants: Impact of bile salts on β-lactoglobulin-coated gold nanoparticles. Journal of Colloid and Interface Science, 2014, 426, 333-340.	5.0	33
51	Investigation of Pesticide Penetration and Persistence on Harvested and Live Basil Leaves Using Surface-Enhanced Raman Scattering Mapping. Journal of Agricultural and Food Chemistry, 2017, 65, 3541-3550.	2.4	33
52	Role of Mucin in Behavior of Food-Grade TiO ₂ Nanoparticles under Simulated Oral Conditions. Journal of Agricultural and Food Chemistry, 2019, 67, 5882-5890.	2.4	32
53	Detecting single Bacillus spores by surface enhanced Raman spectroscopy. Sensing and Instrumentation for Food Quality and Safety, 2008, 2, 247-253.	1.5	31
54	Integration of colorimetric and SERS detection for rapid screening and validation of melamine in milk. Analytical Methods, 2015, 7, 6426-6431.	1.3	30

#	Article	IF	CITATIONS
55	Simultaneous determination of 14 bioactive citrus flavonoids using thin-layer chromatography combined with surface enhanced Raman spectroscopy. Food Chemistry, 2021, 338, 128115.	4.2	30
56	Lipid and lipid oxidation analysis using surface enhanced Raman spectroscopy (SERS) coupled with silver dendrites. Food Research International, 2014, 58, 1-6.	2.9	29
57	Evaluation of surface-enhanced Raman scattering detection using a handheld and a bench-top Raman spectrometer: A comparative study. Talanta, 2014, 129, 79-85.	2.9	29
58	Semi-quantification of surface-enhanced Raman scattering using a handheld Raman spectrometer: a feasibility study. Analyst, The, 2013, 138, 7075.	1.7	27
59	Aptamerâ€Based SERS Detection of Lysozyme on a Foodâ€Handling Surface. Journal of Food Science, 2017, 82, 225-231.	1.5	27
60	Chemical Mapping of Essential Oils, Flavonoids and Carotenoids in Citrus Peels by Raman Microscopy. Journal of Food Science, 2017, 82, 2840-2846.	1.5	27
61	Recent Advances in Spectroscopic Techniques for the Analysis of Microplastics in Food. Journal of Agricultural and Food Chemistry, 2022, 70, 1410-1422.	2.4	27
62	Investigation of degradation and penetration behaviors of dimethoate on and in spinach leaves using in situ SERS and LC-MS. Food Chemistry, 2017, 237, 305-311.	4.2	26
63	Development of a method to evaluate the tenderness of fresh tea leaves based on rapid, in-situ Raman spectroscopy scanning for carotenoids. Food Chemistry, 2020, 308, 125648.	4.2	26
64	A new SERS substrate of self-assembled monolayer film of gold nanoparticles on silicon wafer for the rapid detection of polycyclic aromatic hydrocarbons. Materials Chemistry and Physics, 2020, 250, 122994.	2.0	26
65	Fortification of Plant-Based Milk with Calcium May Reduce Vitamin D Bioaccessibility: An <i>In Vitro</i> Digestion Study. Journal of Agricultural and Food Chemistry, 2021, 69, 4223-4233.	2.4	26
66	Adsorption-enhanced hydrolysis of glucan oligomers into glucose over sulfonated three-dimensionally ordered mesoporous carbon catalysts. Green Chemistry, 2016, 18, 6637-6647.	4.6	25
67	Understanding the competitive interactions in aptamer–gold nanoparticle based colorimetric assays using surface enhanced Raman spectroscopy (SERS). Analytical Methods, 2016, 8, 1602-1608.	1.3	25
68	Detection of Mycotoxins in Food Using Surface-Enhanced Raman Spectroscopy: A Review. ACS Applied Bio Materials, 2021, 4, 295-310.	2.3	25
69	Rationalizing and advancing the 3-MPBA SERS sandwich assay for rapid detection of bacteria in environmental and food matrices. Food Microbiology, 2018, 72, 89-97.	2.1	24
70	Development of a filter-based method for detecting silver nanoparticles and their heteroaggregation in aqueous environments by surface-enhanced Raman spectroscopy. Environmental Pollution, 2016, 211, 198-205.	3.7	23
71	A green, facile, and rapid method for microextraction and Raman detection of titanium dioxide nanoparticles from milk powder. RSC Advances, 2017, 7, 21380-21388.	1.7	22
72	Investigation of the solubility enhancement mechanism of rebaudioside D using a solid dispersion technique with potassium sorbate as a carrier. Food Chemistry, 2015, 174, 564-570.	4.2	21

Lili He

#	Article	IF	CITATIONS
73	Development of a headspace solidâ€phase microextraction–surfaceâ€enhanced Raman scattering approach to detect volatile pesticides. Journal of Raman Spectroscopy, 2019, 50, 6-14.	1.2	21
74	Ag ₂ 0/TiO ₂ Nanocomposite Heterostructure as a Dual Functional Semiconducting Substrate for SERS/SEIRAS Application. Langmuir, 2017, 33, 5345-5352.	1.6	20
75	A facile solvent mediated self-assembly silver nanoparticle mirror substrate for quantitatively improved surface enhanced Raman scattering. Analyst, The, 2017, 142, 4075-4082.	1.7	20
76	A Triple Functional Approach To Simultaneously Determine the Type, Concentration, and Size of Titanium Dioxide Particles. Environmental Science & Technology, 2018, 52, 2863-2869.	4.6	20
77	Mapping bacteria on filter membranes, an innovative SERS approach. Journal of Microbiological Methods, 2018, 147, 69-75.	0.7	20
78	Digestion of animal- and plant-based proteins encapsulated in κ-carrageenan/protein beads under simulated gastrointestinal conditions. Food Research International, 2020, 137, 109662.	2.9	20
79	Effect of the Composition and Structure of Excipient Emulsion on the Bioaccessibility of Pesticide Residue in Agricultural Products. Journal of Agricultural and Food Chemistry, 2017, 65, 9128-9138.	2.4	19
80	Combining Headspace Solid-Phase Microextraction and Surface-Enhanced Raman Spectroscopy To Detect the Pesticide Fonofos in Apple Juice. Journal of Food Protection, 2018, 81, 1087-1092.	0.8	19
81	Synergetic activity of nisin with cell-free supernatant of Bacillus licheniformis ZJU12 against food-borne bacteria. Food Research International, 2006, 39, 905-909.	2.9	18
82	Spectroscopic studies of conformational changes of β-lactoglobulin adsorbed on gold nanoparticle surfaces. Journal of Colloid and Interface Science, 2014, 416, 184-189.	5.0	18
83	Evaluation of Postharvest Washing on Removal of Silver Nanoparticles (AgNPs) from Spinach Leaves. Journal of Agricultural and Food Chemistry, 2016, 64, 6916-6922.	2.4	17
84	Mapping of Pesticide Transmission on Biological Tissues by Surface Enhanced Raman Microscopy with a Gold Nanoparticle Mirror. ACS Applied Materials & Interfaces, 2019, 11, 44894-44904.	4.0	17
85	Effects of water activity, sugars, and proteins on lipid oxidative stability of low moisture model crackers. Food Research International, 2020, 130, 108844.	2.9	17
86	A surface enhanced Raman spectroscopic study of interactions between casein and polymethoxyflavones. Journal of Raman Spectroscopy, 2013, 44, 531-535.	1.2	16
87	Filter-based surface-enhanced Raman spectroscopy for rapid and sensitive detection of the fungicide ferbam in water. International Journal of Environmental Analytical Chemistry, 2016, 96, 1495-1506.	1.8	16
88	Development of a filtration-based SERS mapping platform for specific screening of Salmonella enterica serovar Enteritidis. Analytical and Bioanalytical Chemistry, 2019, 411, 7899-7906.	1.9	16
89	Transformation of Ag ions into Ag nanoparticle-loaded AgCl microcubes in the plant root zone. Environmental Science: Nano, 2019, 6, 1099-1110.	2.2	15
90	Rapid Determination of Saffron Grade and Adulteration by Thin-Layer Chromatography Coupled with Raman Spectroscopy. Food Analytical Methods, 2020, 13, 2128-2137.	1.3	15

#	Article	IF	CITATIONS
91	Oxidative Conversion Mediates Antiproliferative Effects of <i>tert</i> -Butylhydroquinone: Structure and Activity Relationship Study. Journal of Agricultural and Food Chemistry, 2016, 64, 3743-3748.	2.4	14
92	Ultra-sensitive determination of silver nanoparticles by surface-enhanced Raman spectroscopy (SERS) after hydrophobization-mediated extraction. Analyst, The, 2016, 141, 5261-5264.	1.7	14
93	Rapid screening for ricin toxin on letter papers using surface enhanced Raman spectroscopy. Talanta, 2017, 162, 552-557.	2.9	14
94	Rapid identification and quantification of the antibiotic susceptibility of lactic acid bacteria using surface enhanced Raman spectroscopy. Analytical Methods, 2020, 12, 376-382.	1.3	13
95	Gold Coated Zinc Oxide Nanonecklaces as a SERS Substrate. Journal of Nanoscience and Nanotechnology, 2011, 11, 3509-3515.	0.9	12
96	Monitoring the Chemical Production of Citrus-Derived Bioactive 5-Demethylnobiletin Using Surface-Enhanced Raman Spectroscopy. Journal of Agricultural and Food Chemistry, 2013, 61, 8079-8083.	2.4	12
97	Fabrication of lipophilic gold nanoparticles for studying lipids by surface enhanced Raman spectroscopy (SERS). Analyst, The, 2014, 139, 3352-3355.	1.7	12
98	A field-deployable surface-enhanced Raman scattering (SERS) method for sensitive analysis of silver nanoparticles in environmental waters. Science of the Total Environment, 2019, 653, 1034-1041.	3.9	12
99	Washing fresh tea leaves before picking decreases pesticide residues in tea. Journal of the Science of Food and Agriculture, 2020, 100, 4921-4929.	1.7	11
100	Chemical profiling of red wines using surface-enhanced Raman spectroscopy (SERS). Analytical Methods, 2020, 12, 1324-1332.	1.3	11
101	Mapping gold nanoparticles on and in edible leaves in situ using surface enhanced Raman spectroscopy. RSC Advances, 2016, 6, 60152-60159.	1.7	10
102	Simultaneous characterization of chemical structures and bioactivities of citrus-derived components using SERS barcodes. Food Chemistry, 2018, 240, 743-750.	4.2	10
103	Comparison of the Metabolic Behaviors of Six Systemic Insecticides in a Newly Established Cell Suspension Culture Derived from Tea (<i>Camellia sinensis</i> L.) Leaves. Journal of Agricultural and Food Chemistry, 2018, 66, 8593-8601.	2.4	10
104	A facile solvent extraction method facilitating surface-enhanced Raman spectroscopic detection of ochratoxin A in wine and wheat. Talanta, 2021, 224, 121792.	2.9	10
105	Direct Fluorescent Detection of a Polymethoxyflavone in Cell Culture and Mouse Tissue. Journal of Agricultural and Food Chemistry, 2015, 63, 10620-10627.	2.4	9
106	Surfaceâ€enhanced Raman scattering characterization of monohydroxylated polymethoxyflavones. Journal of Raman Spectroscopy, 2016, 47, 901-907.	1.2	9
107	Development of a facile rolling method to amplify an analyte's weak SERS activity and its application for chlordane detection. Analytical Methods, 2020, 12, 433-439.	1.3	9
108	Label-free Imaging and Characterization of Cancer Cell Responses to Polymethoxyflavones Using Raman Microscopy. Journal of Agricultural and Food Chemistry, 2016, 64, 9708-9713.	2.4	8

#	Article	IF	CITATIONS
109	Assessment of three SERS approaches for studying E. Coli O157:H7 susceptibility to ampicillin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 264, 120239.	2.0	8
110	Role of Foliar Biointerface Properties and Nanomaterial Chemistry in Controlling Cu Transfer into Wild-Type and Mutant <i>Arabidopsis thaliana</i> Leaf Tissue. Journal of Agricultural and Food Chemistry, 2022, 70, 4267-4278.	2.4	8
111	Multi-phase detection of antioxidants using surface-enhanced Raman spectroscopy with a gold nanoparticle-coated fiber. Talanta, 2020, 206, 120197.	2.9	7
112	A filtration-assisted approach to enhance optical detection of analytes and its application in food matrices. Food Chemistry, 2021, 338, 127814.	4.2	7
113	Headspace analysis of shelf life of postharvest arugula leaves using a SERS-active fiber. Postharvest Biology and Technology, 2021, 175, 111410.	2.9	7
114	Rapid and efficient removal of silver nanoparticles from plant surfaces using sodium hypochlorite and ammonium hydroxide solution. Food Control, 2019, 98, 68-73.	2.8	6
115	Comparison of labelâ€free and labelâ€based approaches for surfaceâ€enhanced Raman microscopic imaging of bacteria cells. Analytical Science Advances, 2020, 1, 245-253.	1.2	6
116	Rapid capture and SERS detection of triclosan using a silver nanoparticle core – protein satellite substrate. Science of the Total Environment, 2020, 716, 137097.	3.9	6
117	New insight into naturally formed nanosilver particles: role of plant root exudates. Environmental Science: Nano, 2021, 8, 1580-1592.	2.2	6
118	Quantitative age grading of mosquitoes using surfaceâ€enhanced Raman spectroscopy. Analytical Science Advances, 2022, 3, 47-53.	1.2	6
119	Rapid detection of TiO ₂ (E171) in table sugar using Raman spectroscopy. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2017, 34, 1-9.	1.1	5
120	Rapid organic solvent extraction coupled with surface enhanced Raman spectroscopic mapping for ultrasensitive quantification of foliarly applied silver nanoparticles in plant leaves. Environmental Science: Nano, 2020, 7, 1061-1067.	2.2	5
121	Surfaceâ€Enhanced Raman Spectroscopic Analysis of Anatase Titanium Dioxide Nanoparticles: Investigation of the Key Factors. ChemistrySelect, 2021, 6, 5987-5993.	0.7	5
122	Aptamer-based surface enhanced Raman spectroscopy (SERS) for the rapid detection of Salmonella Enteritidis contaminated in ground beef. LWT - Food Science and Technology, 2021, 150, 111937.	2.5	5
123	Investigation of factors that impact the label-free surface-enhanced Raman scattering (SERS) for the detection and discrimination of Salmonella Enteritidis. LWT - Food Science and Technology, 2021, 150, 111962.	2.5	5
124	In situ SERS detection of emulsifiers at lipid interfaces using label-free amphiphilic gold nanoparticles. Analyst, The, 2014, 139, 5075-5078.	1.7	4
125	Understanding and Advancing the 3-mercaptophenylboronic Acid Chemical Label for Optimal Surface-enhanced Raman Spectroscopic Analysis of Bacteria Populations. ACS Applied Bio Materials, 2020, 3, 8768-8775.	2.3	4
126	An innovative filtration based Raman mapping technique for the size characterization of anatase titanium dioxide nanoparticles. Talanta, 2021, 224, 121836.	2.9	4

#	Article	IF	CITATIONS
127	<i>In situ</i> and real time investigation of foliarly applied silver nanoparticles on and in spinach leaves by surface enhanced Raman spectroscopic mapping. Analytical Methods, 2021, 13, 2567-2574.	1.3	4
128	Development of a portable SERS method for testing the antibiotic sensitivity of foodborne bacteria. Journal of Microbiological Methods, 2022, 198, 106496.	0.7	4
129	Investigation of the Impact of a Pesticide Adjuvant on Dimethoate Persistence, Penetration, and Stability on Apples Using Surface-Enhanced Raman Spectroscopy. ACS Agricultural Science and Technology, 2022, 2, 788-795.	1.0	4
130	Recent Advances in Nanomaterials for Environmental Detection and Remediation. Journal of Chemistry, 2015, 2015, 1-2.	0.9	3
131	SERS imaging analyses of bacteria cells among plant tissues. Talanta, 2021, 225, 122008.	2.9	3
132	Raman instruments for food quality evaluation. , 2019, , 119-143.		2
133	Practical SERS method for assessment of the washing durability of textiles containing silver nanoparticles. Analytical Methods, 2020, 12, 1186-1196.	1.3	2
134	Surface-Enhanced Raman Spectroscopy: A Tool for All Classes of Food Contaminants. , 2017, , .		1
135	Food Chemistry as a Vital Science: Past, Present, Future. ACS Symposium Series, 2019, , 231-238.	0.5	1
136	A Filter-based Surface Enhanced Raman Spectroscopic Assay for Rapid Detection of Chemical Contaminants. Journal of Visualized Experiments, 2016, , 53791.	0.2	0
137	Headspace Characterization and Quantification of Aromatic Organosulfur Compounds in Garlic Extracts Using Surface-Enhanced Raman Scattering with a Mirror-in-a-Cap Substrate. Journal of AOAC INTERNATIONAL, 2020, 103, 1201-1207.	0.7	0
138	Characterizing Heterogeneous Cellular Responses to Polymethoxyflavones Using Raman Microscopy. FASEB Journal, 2015, 29, 118.8.	0.2	0
139	Translocation of Gold Nanoparticles in Model Epithelial Cells (Cacoâ€2 Monolayers). FASEB Journal, 2016, 30, lb201.	0.2	0
140	A new approach to characterize the molecular interactions between TiO 2 nanoparticles and dietary flavonoids using surfaceâ€enhanced Raman spectroscopy. FASEB Journal, 2016, 30, .	0.2	0