Ruijun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4811125/publications.pdf

Version: 2024-02-01

687363 888059 20 788 13 17 citations h-index g-index papers 20 20 20 1110 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ultra-low threshold lasing through phase front engineering via a metallic circular aperture. Nature Communications, 2022, 13, 230.	12.8	4
2	Monolithic Integration of Mid-Infrared Quantum Cascade Lasers and Frequency Combs with Passive Waveguides. ACS Photonics, 2022, 9, 426-431.	6.6	9
3	Ultra-low Threshold Quantum Cascade Laser. , 2021, , .		O
4	Electrically pumped widely tunable O-band hybrid lithium niobite/III-V laser. Optics Letters, 2021, 46, 5413.	3.3	28
5	III–V/Si mid-IR photonic integrated circuits. , 2020, , 567-594.		0
6	Mid-infrared frequency comb from a ring quantum cascade laser. Optica, 2020, 7, 162.	9.3	60
7	Ridge-width dependence of the dispersion and performance of mid-infrared quantum cascade laser frequency combs. , 2020, , .		1
8	Mid-infrared quantum cascade laser frequency combs based on multi-section waveguides. Optics Letters, 2020, 45, 6462.	3.3	10
9	Widely Tunable III–V/Silicon Lasers for Spectroscopy in the Short-Wave Infrared. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-12.	2.9	8
10	27 dB gain III–V-on-silicon semiconductor optical amplifier with > 17 dBm output power. Optics Express, 2019, 27, 293.	3.4	43
11	Widely tunable 23  μm III-V-on-silicon Vernier lasers for broadband spectroscopic sensing. Photonics Research, 2018, 6, 858.	7.0	47
12	Novel Light Source Integration Approaches for Silicon Photonics. Laser and Photonics Reviews, 2017, 11, 1700063.	8.7	143
13	Broad wavelength coverage 23  î¼m III-V-on-silicon DFB laser array. Optica, 2017, 4, 972.	9.3	29
14	Ill–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 Î⅓m Wavelength Range. Sensors, 2017, 17, 1788.	3.8	60
15	23 µm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit. Optics Express, 2016, 24, 21081.	3.4	36
16	Compact GaSb/silicon-on-insulator 20x μm widely tunable external cavity lasers. Optics Express, 2016, 24, 28977.	3.4	46
17	Heterogeneously integrated III–V-on-silicon 2.3x <i>Î⅓4</i> m distributed feedback lasers based on a type-II active region. Applied Physics Letters, 2016, 109, .	3.3	21
18	III-V-on-silicon 2-µm-wavelength-range wavelength demultiplexers with heterogeneously integrated InP-based type-II photodetectors. Optics Express, 2016, 24, 8480.	3.4	34

Ruijun Wang

#	Article	IF	CITATIONS
19	III-V-on-Silicon Photonic Devices for Optical Communication and Sensing. Photonics, 2015, 2, 969-1004.	2.0	103
20	Silicon-Based Photonic Integration Beyond the Telecommunication Wavelength Range. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 394-404.	2.9	106