Xiangfen Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4811091/publications.pdf

Version: 2024-02-01

185998 149479 4,655 58 28 56 citations g-index h-index papers 60 60 60 7927 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Porous monolith of few-layered boron nitride for effective water cleanup. Journal of Materials Chemistry A, 2022, 10, 846-854.	5.2	8
2	Nitrogen and phosphorus co-doped carbon for improving capacity and rate performances of potassium ion batteries. FlatChem, 2022, , 100398.	2.8	7
3	Porous monoliths of 3D graphene for electric doubleâ€layer supercapacitors. , 2021, 3, 193-224.		46
4	Back Cover Image, Volume 3, Number 2, June 2021., 2021, 3, ii.		1
5	Flexible conductive polymer composite materials based on strutted graphene foam. Composites Communications, 2021, 25, 100757.	3.3	27
6	Interfacial thermal conductance enhancement of BN/PVA composites via plasma activations of fillers. Composites Communications, 2021, 28, 100963.	3.3	9
7	Metal-Organic Powder Thermochemical Solid-Vapor Architectonics toward Gradient Hybrid Monolith with Combined Structure-Function Features. Matter, 2020, 3, 879-891.	5.0	22
8	Porous Monolithic Electrode of Ni ₃ FeN on 3D Graphene for Efficient Oxygen Evolution. Journal of Nanoscience and Nanotechnology, 2020, 20, 5175-5181.	0.9	8
9	Biomass-Derived Carbon Paper to Sandwich Magnetite Anode for Long-Life Li-lon Battery. ACS Nano, 2019, 13, 11901-11911.	7.3	82
10	Monolithic electrode integrated of ultrathin NiFeP on 3D strutted graphene for bifunctionally efficient overall water splitting. Nano Energy, 2019, 58, 870-876.	8.2	166
11	Few-layer graphitic shells networked by low temperature pyrolysis of zeolitic imidazolate frameworks. Materials Chemistry Frontiers, 2018, 2, 520-529.	3.2	9
12	CoO-modified Co ₄ N as a heterostructured electrocatalyst for highly efficient overall water splitting in neutral media. Journal of Materials Chemistry A, 2018, 6, 24767-24772.	5.2	105
13	Paper-Derived Flexible 3D Interconnected Carbon Microfiber Networks with Controllable Pore Sizes for Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2018, 10, 37046-37056.	4.0	38
14	Curving effects of concave dodecahedral nanocarbons enable enhanced Li-ion storage. Journal of Materials Chemistry A, 2018, 6, 14894-14902.	5.2	29
15	Thermal conductive composites reinforced via advanced boron nitride nanomaterials. Composites Communications, 2018, 10, 103-109.	3.3	64
16	Hollow carbon nanobubbles: monocrystalline MOF nanobubbles and their pyrolysis. Chemical Science, 2017, 8, 3538-3546.	3.7	329
17	Spontaneous Weaving of Graphitic Carbon Networks Synthesized by Pyrolysis of ZIFâ€67 Crystals. Angewandte Chemie, 2017, 129, 8555-8560.	1.6	33
18	Spontaneous Weaving of Graphitic Carbon Networks Synthesized by Pyrolysis of ZIFâ€67 Crystals. Angewandte Chemie - International Edition, 2017, 56, 8435-8440.	7.2	362

#	Article	lF	CITATIONS
19	Perfectly ordered mesoporous iron-nitrogen doped carbon as highly efficient catalyst for oxygen reduction reaction in both alkaline and acidic electrolytes. Nano Energy, 2017, 36, 286-294.	8.2	183
20	Gold Nanoparticles Supported on Mesoporous Titania Thin Films with High Loading as a CO Oxidation Catalyst. Chemistry - an Asian Journal, 2017, 12, 877-881.	1.7	7
21	Coordination Polymer Nanoglue: Robust Adhesion Based on Collective Lamellar Stacking of Nanoplates. ACS Nano, 2017, 11, 3662-3670.	7.3	27
22	Boron nitride nanotubeâ€enhanced osteogenic differentiation of mesenchymal stem cells. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 323-329.	1.6	61
23	High-performance Pt catalysts supported on hierarchical nitrogen-doped carbon nanocages for methanol electrooxidation. Chinese Journal of Catalysis, 2016, 37, 1149-1155.	6.9	22
24	Engineering sulfur vacancies and impurities in NiCo2S4 nanostructures toward optimal supercapacitive performance. Nano Energy, 2016, 26, 313-323.	8.2	345
25	Template-free synthesis of boron nitride foam-like porous monoliths and their high-end applications in water purification. Journal of Materials Chemistry A, 2016, 4, 1469-1478.	5.2	133
26	Synthesis of Thin Titania Photoanodes with Large Mesopores for Electricity-generating Windows. Chemistry Letters, 2015, 44, 656-658.	0.7	6
27	Nanoparticle-based screen printing of copper zinc tin sulfide thin film as photocathode for quantum dot sensitized solar cell. Materials Letters, 2015, 158, 198-201.	1.3	6
28	An oxygen cathode with stable full discharge–charge capability based on 2D conducting oxide. Energy and Environmental Science, 2015, 8, 1992-1997.	15.6	113
29	High-throughput fabrication of strutted graphene by ammonium-assisted chemical blowing for high-performance supercapacitors. Nano Energy, 2015, 16, 81-90.	8.2	83
30	Design of BN porous sheets with richly exposed (002) plane edges and their application as TiO2 visible light sensitizer. Nano Energy, 2015, 16, 19-27.	8.2	99
31	Recent Progress on Fabrications and Applications of Boron Nitride Nanomaterials: A Review. Journal of Materials Science and Technology, 2015, 31, 589-598.	5.6	282
32	Aluminum matrix composites reinforced with multi-walled boron nitride nanotubes fabricated by a high-pressure torsion technique. Materials and Design, 2015, 88, 451-460.	3.3	67
33	Pollutant capturing SERS substrate: porous boron nitride microfibers with uniform silver nanoparticle decoration. Nanoscale, 2015, 7, 18992-18997.	2.8	56
34	Supercapacitive energy storage performance of molybdenum disulfide nanosheets wrapped with microporous carbons. Journal of Materials Chemistry A, 2015, 3, 3097-3102.	5.2	70
35	Synthesis of a Largeâ€Sized Mesoporous Phosphosilicate Thin Film through Evaporationâ€Induced Polymeric Micelle Assembly. Chemistry - an Asian Journal, 2015, 10, 183-187.	1.7	5
36	Chemical Preparation of Ferroelectric Mesoporous Barium Titanate Thin Films: Drastic Enhancement of Curie Temperature Induced by Mesoporeâ€Derived Strain. Chemistry - A European Journal, 2014, 20, 11283-11286.	1.7	14

#	Article	IF	Citations
37	Biomass-Directed Synthesis of 20 g High-Quality Boron Nitride Nanosheets for Thermoconductive Polymeric Composites. ACS Nano, 2014, 8, 9081-9088.	7.3	145
38	Highly Water-Soluble, Porous, and Biocompatible Boron Nitrides for Anticancer Drug Delivery. ACS Nano, 2014, 8, 6123-6130.	7.3	374
39	Spot Moiré Fringes: Determination of Domain Boundaries and Structural Parameters in Ordered Nanoporous Structures. Chemistry - A European Journal, 2014, 20, 2179-2183.	1.7	10
40	Electrochemical Synthesis of Transparent, Amorphous, C ₆₀ â€Rich, Photoactive, and Lowâ€Doped Film with an Interconnected Structure. Small, 2013, 9, 2064-2068.	5.2	21
41	Preparation and Hydrogen Sorption Performances of BCNO Porous Microbelts with Ultraâ€Narrow and Tunable Pore Widths. Chemistry - an Asian Journal, 2013, 8, 2936-2939.	1.7	14
42	Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nature Communications, 2013, 4, 2905.	5.8	606
43	Formation of secondary Moir \tilde{A} © patterns for characterization of nanoporous alumina structures in multiple domains with different orientations. Nanoscale, 2013, 5, 2285.	2.8	30
44	Controlled Synthesis of Wellâ€Ordered Mesoporous Titania Films with Large Mesopores Templated by Spherical PSâ€∢i>b⟨/i>â€PEO Micelles. European Journal of Inorganic Chemistry, 2013, 2013, 3286-3291.	1.0	16
45	Preparation of Ordered Mesoporous Aluminaâ€Doped Titania Films with High Thermal Stability and Their Application to Highâ€5peed Passiveâ€Matrix Electrochromic Displays. Chemistry - A European Journal, 2013, 19, 10958-10964.	1.7	22
46	Vertically-oriented conjugated polymer arrays in mesoporous aluminavia simple drop-casting and appearance of anisotropic photoluminescence. Chemical Communications, 2012, 48, 549-551.	2.2	16
47	Synthesis of Continuous Mesoporous Alumina Films with Largeâ€Sized Cageâ€Type Mesopores by Using Diblock Copolymers. Chemistry - an Asian Journal, 2012, 7, 1713-1718.	1.7	43
48	Synthesis of highly ordered mesoporous alumina thin films and their framework crystallization to \hat{I}^3 -alumina phase. Dalton Transactions, 2011, 40, 10851.	1.6	37
49	New trend on mesoporous films: precise controls of one-dimensional (1D) mesochannels toward innovative applications. Journal of Materials Chemistry, 2011, 21, 8934.	6.7	112
50	Mesoporous SiO ₂ and Nb ₂ O ₅ thin films with large spherical mesopores through self-assembly of diblock copolymers: unusual conversion to cuboidal mesopores by Nb ₂ O ₅ crystal growth. CrystEngComm, 2011, 13, 40-43.	1.3	25
51	Synthesis of Continuous Mesoporous Ga-Doped Titania Films with Anatase Crystallized Framework. Journal of Nanoscience and Nanotechnology, 2011, 11, 6926-6933.	0.9	10
52	Hybridization of Photoactive Titania Nanoparticles with Mesoporous Silica Nanoparticles and Investigation of Their Photocatalytic Activity. Bulletin of the Chemical Society of Japan, 2011, 84, 812-817.	2.0	29
53	Improved Inactivation Effect of Bacteria: Fabrication of Mesoporous Anatase Films with Fine Ag Nanoparticles Prepared by Coaxial Vacuum Arc Deposition. Chemistry Letters, 2011, 40, 420-422.	0.7	19
54	A Mesoporous γâ€Alumina Film with Vertical Mesoporosity: The Unusual Conversion from a <i>lm</i> \${ar 3}\$ <i>m</i> Mesostructure to Vertically Oriented γâ€Alumina Nanowires. Angewandte Chemie - International Edition, 2011, 50, 7410-7413.	7.2	49

#	Article	IF	CITATIONS
55	Cerium-doped mesoporous TiO2 thin films: Controlled crystallization of anatase with retention of highly ordered mesostructure. Microporous and Mesoporous Materials, 2011, 139, 38-44.	2.2	20
56	Unusual Antibacterial Property of Mesoporous Titania Films: Drastic Improvement by Controlling Surface Area and Crystallinity. Chemistry - an Asian Journal, 2010, 5, 1978-1983.	1.7	116
57	Novel homogeneous Salen Mn(III) catalysts synthesized from dialdehyde or diketone with o-aminophenol for catalyzing epoxidation of alkenes. Catalysis Letters, 2007, 113, 155-159.	1.4	8
58	Metal-Organic Powder Thermochemical Solid-Vapor Architectonics Towards Gradient Hybrid Monolith with Combined Structure-Function Features. SSRN Electronic Journal, 0, , .	0.4	0