
Alexandra H Brozena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4811040/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid Synthesis of Highâ€Entropy Oxide Microparticles. Small, 2022, 18, e2104761.	10.0	41
2	Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition. Science Advances, 2022, 8, eabm4322.	10.3	49
3	Rapid Pressureless Sintering of Glasses. Small, 2022, 18, e2107951.	10.0	20
4	High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery. Science, 2022, 376, eabn3103.	12.6	239
5	Sustainable high-strength macrofibres extracted from natural bamboo. Nature Sustainability, 2022, 5, 235-244.	23.7	113
6	A high-performance hydroxide exchange membrane enabled by Cu2+-crosslinked chitosan. Nature Nanotechnology, 2022, 17, 629-636.	31.5	50
7	Programmable heating and quenching for efficient thermochemical synthesis. Nature, 2022, 605, 470-476.	27.8	61
8	Tailoring grain growth and densification toward a high-performance solid-state electrolyte membrane. Materials Today, 2021, 42, 41-48.	14.2	32
9	Denary oxide nanoparticles as highly stable catalysts for methane combustion. Nature Catalysis, 2021, 4, 62-70.	34.4	153
10	Developing fibrillated cellulose as a sustainable technological material. Nature, 2021, 590, 47-56.	27.8	711
11	Copper-coordinated cellulose ion conductors for solid-state batteries. Nature, 2021, 598, 590-596.	27.8	262
12	Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Science, 2021, 374, 465-471.	12.6	137
13	Continuous Synthesis of Hollow Highâ€Entropy Nanoparticles for Energy and Catalysis Applications. Advanced Materials, 2020, 32, e2002853.	21.0	93
14	Printable, high-performance solid-state electrolyte films. Science Advances, 2020, 6, .	10.3	54
15	A general method to synthesize and sinter bulk ceramics in seconds. Science, 2020, 368, 521-526.	12.6	357
16	Precision Imprinted Nanostructural Wood. Advanced Materials, 2019, 31, e1903270.	21.0	31
17	Strong, Water-Stable Ionic Cable from Bio-Hydrogel. Chemistry of Materials, 2019, 31, 9288-9294.	6.7	24
18	Controlling the optical properties of carbon nanotubes with organic colour-centre quantum defects. Nature Reviews Chemistry, 2019, 3, 375-392.	30.2	124

Alexandra H Brozena

#	Article	IF	CITATIONS
19	Critical Knowledge Gaps in Mass Transport through Single-Digit Nanopores: A Review and Perspective. Journal of Physical Chemistry C, 2019, 123, 21309-21326.	3.1	234
20	A printed, recyclable, ultra-strong, and ultra-tough graphite structural material. Materials Today, 2019, 30, 17-25.	14.2	83
21	Controlled Defects in Semiconducting Carbon Nanotubes Promote Efficient Generation and Luminescence of Trions. ACS Nano, 2014, 8, 4239-4247.	14.6	52
22	Propagative Sidewall Alkylcarboxylation that Induces Red-Shifted Near-IR Photoluminescence in Single-Walled Carbon Nanotubes. Journal of Physical Chemistry Letters, 2013, 4, 826-830.	4.6	46
23	Confined propagation of covalent chemical reactions on single-walled carbon nanotubes. Nature Communications, 2011, 2, 382.	12.8	67
24	Outerwall selective alkylcarboxylation and enrichment of double-walled carbon nanotubes. Journal of Materials Chemistry, 2011, 21, 18568.	6.7	7
25	Outer Wall Selectively Oxidized, Water-Soluble Double-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2010, 132, 3932-3938.	13.7	74