
Saeed Karbasi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4811023/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetic CoFe2O4 nanoparticles doped with metal ions: A review. Ceramics International, 2020, 46, 18391-18412.	2.3	155
2	Potential of an electrospun composite scaffold of poly (3-hydroxybutyrate)-chitosan/alumina nanowires in bone tissue engineering applications. Materials Science and Engineering C, 2019, 99, 1075-1091.	3.8	106
3	Effects of Some Parameters on Particle Size Distribution of Chitosan Nanoparticles Prepared by Ionic Gelation Method. Journal of Cluster Science, 2013, 24, 891-903.	1.7	102
4	Electrospun poly(hydroxybutyrate)/chitosan blend fibrous scaffolds for cartilage tissue engineering. Journal of Applied Polymer Science, 2016, 133, .	1.3	98
5	Evaluation of PCL/chitosan electrospun nanofibers for liver tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 149-157.	1.8	96
6	In vitro and in vivo performance of a propolis-coated polyurethane wound dressing with high porosity and antibacterial efficacy. Colloids and Surfaces B: Biointerfaces, 2019, 178, 177-184.	2.5	76
7	Modified poly(3-hydroxybutyrate)-based scaffolds in tissue engineering applications: A review. International Journal of Biological Macromolecules, 2021, 166, 986-998.	3.6	67
8	Evaluation of physical, mechanical and biological properties of poly 3-hydroxybutyrate-chitosan-multiwalled carbon nanotube/silk nano-micro composite scaffold for cartilage tissue engineering applications. International Journal of Biological Macromolecules, 2019, 132, 822-835.	3.6	66
9	Evaluation of the effects of keratin on physical, mechanical and biological properties of poly (3-hydroxybutyrate) electrospun scaffold: Potential application in bone tissue engineering. European Polymer Journal, 2020, 124, 109502.	2.6	64
10	Investigation on bioactivity and cytotoxicity of mesoporous nano-composite MCM-48/hydroxyapatite for ibuprofen drug delivery. Ceramics International, 2014, 40, 7355-7362.	2.3	61
11	Incorporation of chitosan/graphene oxide nanocomposite in to the PMMA bone cement: Physical, mechanical and biological evaluation. International Journal of Biological Macromolecules, 2020, 149, 783-793.	3.6	61
12	Preparation of a novel biodegradable nanocomposite scaffold based on poly (3-hydroxybutyrate)/bioglass nanoparticles for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2010, 21, 2125-2132.	1.7	59
13	Nano/Micro Hybrid Scaffold of PCL or P3HB Nanofibers Combined with Silk Fibroin for Tendon and Ligament Tissue Engineering. Journal of Applied Biomaterials and Functional Materials, 2015, 13, 156-168.	0.7	59
14	Physical, mechanical and biological performance of PHB-Chitosan/MWCNTs nanocomposite coating deposited on bioglass based scaffold: Potential application in bone tissue engineering. International Journal of Biological Macromolecules, 2020, 152, 645-662.	3.6	56
15	A novel bilayer drug-loaded wound dressing of PVDF and PHB/Chitosan nanofibers applicable for post-surgical ulcers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 772-777.	1.8	54
16	Evaluation of the effects of multiwalled carbon nanotubes on electrospun poly(3-hydroxybutirate) scaffold for tissue engineering applications. Journal of Porous Materials, 2018, 25, 259-272.	1.3	53
17	Chitosan/MWCNTs composite as bone substitute: Physical, mechanical, bioactivity, and biodegradation evaluation. Polymer Composites, 2019, 40, E1622.	2.3	53
18	Effects of multi-wall carbon nanotubes on structural and mechanical properties of poly(3-hydroxybutyrate)/chitosan electrospun scaffolds for cartilage tissue engineering. Bulletin of Materials Science, 2017, 40, 1247-1253.	0.8	52

#	Article	IF	CITATIONS
19	Tissue engineering: Dentin – pulp complex regeneration approaches (A review). Tissue and Cell, 2017, 49, 552-564.	1.0	52
20	Preparation and characterization of poly ε -caprolactone-gelatin/multi-walled carbon nanotubes electrospun scaffolds for cartilage tissue engineering applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 326-337.	1.8	52
21	Polymethyl Methacrylate-Based Bone Cements Containing Carbon Nanotubes and Graphene Oxide: An Overview of Physical, Mechanical, and Biological Properties. Polymers, 2020, 12, 1469.	2.0	52
22	Preparation, chemistry and physical properties of bone-derived hydroxyapatite particles having a negative zeta potential. Materials Chemistry and Physics, 2012, 132, 446-452.	2.0	50
23	Does the tissue engineering architecture of poly(3â€hydroxybutyrate) scaffold affects cell–material interactions?. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1907-1918.	2.1	45
24	Evaluation of the effects of starch on polyhydroxybutyrate electrospun scaffolds for bone tissue engineering applications. International Journal of Biological Macromolecules, 2021, 191, 500-513.	3.6	45
25	Polyhydroxybutyrate/chitosan/bioglass nanocomposite as a novel electrospun scaffold: fabrication and characterization. Journal of Porous Materials, 2017, 24, 1447-1460.	1.3	44
26	Incorporation of inorganic bioceramics into electrospun scaffolds for tissue engineering applications: A review. Ceramics International, 2022, 48, 8803-8837.	2.3	42
27	Preparation and evaluation of poly glycerol sebacate/poly hydroxy butyrate coreâ€shell electrospun nanofibers with sequentially release of ciprofloxacin and simvastatin in wound dressings. Polymers for Advanced Technologies, 2018, 29, 1795-1803.	1.6	41
28	Effects of nano-bioactive glass on structural, mechanical and bioactivity properties of Poly (3-hydroxybutyrate) electrospun scaffold for bone tissue engineering applications. Materials Technology, 2019, 34, 540-548.	1.5	41
29	Recent advances in modification strategies of pre- and post-electrospinning of nanofiber scaffolds in tissue engineering. Reactive and Functional Polymers, 2022, 172, 105202.	2.0	40
30	Evaluation of the effects of β-tricalcium phosphate on physical, mechanical and biological properties of Poly (3-hydroxybutyrate)/chitosan electrospun scaffold for cartilage tissue engineering applications. Materials Technology, 2019, 34, 615-625.	1.5	36
31	Poly(methyl methacrylate) bone cement, its rise, growth, downfall and future. Polymer International, 2021, 70, 1182-1201.	1.6	36
32	Poly(hydroxybutyrate)/chitosan Aligned Electrospun Scaffold as a Novel Substrate for Nerve Tissue Engineering. Advanced Biomedical Research, 2018, 7, 44.	0.2	36
33	Effect of Polyhydroxybutyrate/Chitosan/Bioglass nanofiber scaffold on proliferation and differentiation of stem cells from human exfoliated deciduous teeth into odontoblast-like cells. Materials Science and Engineering C, 2018, 89, 128-139.	3.8	35
34	Physical and mechanical properties of a poly-3-hydroxybutyrate-coated nanocrystalline hydroxyapatite scaffold for bone tissue engineering. Journal of Porous Materials, 2012, 19, 667-675.	1.3	34
35	Synthetic-based blended electrospun scaffolds in tissue engineering applications. Journal of Materials Science, 2022, 57, 4020-4079.	1.7	34
36	Evaluation of mechanical properties and cell viability of poly (3-hydroxybutyrate)-chitosan/Al ₂ O ₃ nanocomposite scaffold for cartilage tissue engineering. Journal of Medical Signals and Sensors, 2019, 9, 111.	0.5	29

#	Article	IF	CITATIONS
37	Polycaprolactone-chitosan/multi-walled carbon nanotube: A highly strengthened electrospun nanocomposite scaffold for cartilage tissue engineering. International Journal of Biological Macromolecules, 2022, 209, 1801-1814.	3.6	29
38	Nanobiocomposite of poly(lactideâ€ <i>co</i> â€glycolide)/chitosan electrospun scaffold can promote proliferation and transdifferentiation of <scp>S</scp> chwannâ€like cells from human adiposeâ€derived stem cells. Journal of Biomedical Materials Research - Part A, 2015, 103, 2628-2634.	2.1	27
39	Evaluation of structural and mechanical properties of electrospun nano-micro hybrid of poly hydroxybutyrate-chitosan/silk scaffold for cartilage tissue engineering. Advanced Biomedical Research, 2016, 5, 180.	0.2	27
40	Evaluation of the effects of hyaluronic acid on poly (3-hydroxybutyrate)/chitosan/carbon nanotubes electrospun scaffold: structure and mechanical properties. Polymer-Plastics Technology and Materials, 2019, 58, 2031-2040.	0.6	26
41	Physical, mechanical and biological evaluation of poly (3-hydroxybutyrate)-chitosan/MWNTs as a novel electrospun scaffold for cartilage tissue engineering applications. Polymer-Plastics Technology and Materials, 2020, 59, 417-429.	0.6	25
42	3â€Dimensional Printing of Hydrogelâ€Based Nanocomposites: A Comprehensive Review on the Technology Description, Properties, and Applications. Advanced Engineering Materials, 2021, 23, 2100477.	1.6	25
43	Experimental investigation of the governing parameters in the electrospinning of poly(3â€hydroxybutyrate) scaffolds: Structural characteristics of the pores. Journal of Applied Polymer Science, 2010, 118, 2682-2689.	1.3	24
44	Evaluation of mechanical property and bioactivity of nano-bioglass 45S5 scaffold coated with poly-3-hydroxybutyrate. Journal of Materials Science: Materials in Medicine, 2015, 26, 62.	1.7	24
45	Evaluation of physical, mechanical, and biodegradation of chitosan/graphene oxide composite as bone substitutes. Polymer-Plastics Technology and Materials, 2020, 59, 430-440.	0.6	24
46	Extremely low-frequency electromagnetic field influences the survival and proliferation effect of human adipose derived stem cells. Advanced Biomedical Research, 2014, 3, 25.	0.2	24
47	Preparation and characterization of poly (hydroxy butyrate)/chitosan blend scaffolds for tissue engineering applications. Advanced Biomedical Research, 2016, 5, 177.	0.2	24
48	Herbal Remedies as Potential in Cartilage Tissue Engineering: An Overview of New Therapeutic Approaches and Strategies. Molecules, 2020, 25, 3075.	1.7	23
49	Swelling behavior and cell viability of dehydrothermally crosslinked poly(vinyl alcohol) hydrogel grafted withN-vinyl pyrrolidone or acrylic acid using ?-radiation. Journal of Applied Polymer Science, 2004, 91, 2862-2868.	1.3	22
50	Comparison of acellular and cellular bioactivity of poly 3-hydroxybutyrate/hydroxyapatite nanocomposite and poly 3-hydroxybutyrate scaffolds. Biotechnology and Bioprocess Engineering, 2013, 18, 587-593.	1.4	22
51	Biodegradation and cellular evaluation of aligned and random poly (3-hydroxybutyrate)/chitosan electrospun scaffold for nerve tissue engineering applications. Materials Technology, 2020, 35, 92-101.	1.5	22
52	Recent advances on akermanite calciumâ€ s ilicate ceramic for biomedical applications. International Journal of Applied Ceramic Technology, 2021, 18, 1901-1920.	1.1	22
53	Incorporation of multi-walled carbon nanotubes into electrospun PCL/gelatin scaffold: the influence on the physical, chemical and thermal properties and cell response for tissue engineering. Materials Technology, 2020, 35, 39-49.	1.5	21
54	Biological evaluation of the effects of Hyaluronic acid on Poly (3-hydroxybutyrate) based Electrospun Nanocomposite scaffolds for cartilage tissue engineering application. Materials Technology, 2020, 35, 141-151.	1.5	20

#	Article	IF	CITATIONS
55	Evaluation of physical, mechanical and biological properties of bioglass/titania scaffold coated with poly (3-hydroxybutyrate)-chitosan for bone tissue engineering applications. Materials Technology, 2020, 35, 75-91.	1.5	20
56	Evaluation of the effects of nano-TiO2 on bioactivity and mechanical properties of nano bioglass-P3HB composite scaffold for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2016, 27, 2.	1.7	19
57	Evaluation of the effects of chitosan/multiwalled carbon nanotubes composite on physical, mechanical and biological properties of polymethyl methacrylate-based bone cements. Materials Technology, 2020, 35, 267-280.	1.5	19
58	Fabrication and characterization of <scp>chitosanâ€gelatin</scp> / <scp>singleâ€walled</scp> carbon nanotubes electrospun composite scaffolds for cartilage tissue engineering applications. Polymers for Advanced Technologies, 2022, 33, 81-95.	1.6	19
59	Electrospun halloysite nanotube loaded polyhydroxybutyrate-starch fibers for cartilage tissue engineering. International Journal of Biological Macromolecules, 2022, 214, 301-311.	3.6	19
60	Effects of cartilage acellular solubilised ECM on physicomechanical and biological properties of polycaprolactone/fibrin hybrid scaffold fabricated by 3D-printing and salt-leaching methods. Materials Technology, 2022, 37, 204-212.	1.5	18
61	Cell Attachment and Proliferation of Human Adipose-Derived Stem Cells on PLGA/Chitosan Electrospun Nano-Biocomposite. Cell Journal, 2015, 17, 429-37.	0.2	17
62	Direct cytotoxicity evaluation of 63S bioactive glass and bone-derived hydroxyapatite particles using yeast model and human chondrocyte cells by microcalorimetry. Journal of Materials Science: Materials in Medicine, 2011, 22, 2293-2300.	1.7	16
63	Evaluation of structural, mechanical, and cellular behavior of electrospun poly-3-hydroxybutyrate scaffolds loaded with glucosamine sulfate to develop cartilage tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 589-602.	1.8	16
64	Scaffold percolative efficiency: in vitro evaluation of the structural criterion for electrospun mats. Journal of Materials Science: Materials in Medicine, 2010, 21, 2989-2998.	1.7	15
65	The Influence of Bioglass Nanoparticles on the Biodegradation and Biocompatibility of Poly (3-Hydroxybutyrate) Scaffolds. International Journal of Artificial Organs, 2012, 35, 1015-1024.	0.7	15
66	Characterization of PLGA/Chitosan Electrospun Nano-Biocomposite Fabricated by Two Different Methods. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 64-75.	1.8	15
67	An Investigation into the Corrosion Behavior of MgO/ZrO2 Nanocomposite Coatings Prepared by Plasma Electrolytic Oxidation on the AZ91 Magnesium Alloy. Journal of Materials Engineering and Performance, 2017, 26, 4255-4264.	1.2	15
68	Evaluate the growth and adhesion of osteoblast cells on nanocomposite scaffold of hydroxyapatite/titania coated with poly hydroxybutyrate. Advanced Biomedical Research, 2016, 5, 156.	0.2	15
69	Effect of Multi-wall Carbon Nanotubes(MWNTs) on Structural and Mechanical Properties of Poly(3-hydroxybutirate) Electrospun Scaffolds for Tissue Engineering Applications. Scientia Iranica, 2016, 23, 3145-3152.	0.3	14
70	Evaluation of physical, mechanical and biological properties of β-tri-calcium phosphate/Poly-3-hydroxybutyrate nano composite scaffold for bone tissue engineering application. Materials Technology, 2021, 36, 237-249.	1.5	13
71	Cytotoxicity assessment of polyhydroxybutyrate/chitosan/nano- bioglass nanofiber scaffolds by stem cells from human exfoliated deciduous teeth stem cells from dental pulp of exfoliated deciduous tooth. Dental Research Journal, 2018, 15, 136.	0.2	13
72	Baghdadite/Polycaprolactone nanocomposite scaffolds: preparation, characterisation, and in vitro biological responses of human osteoblast-like cells (Saos-2 cell line). Materials Technology, 2020, 35, 421-432.	1.5	12

#	Article	IF	CITATIONS
73	Application of intelligent neural network method for prediction of mechanical behavior of wire-rope scaffold in tissue engineering. Journal of the Textile Institute, 2014, 105, 264-274.	1.0	11
74	Influence of calcinated and non calcinated nanobioglass particles on hardness and bioactivity of sol–gel-derived TiO2–SiO2 nano composite coatings on stainless steel substrates. Journal of Materials Science: Materials in Medicine, 2011, 22, 829-838.	1.7	10
75	The influence of bioglass nanoparticles on the biodegradation and biocompatibility of poly (3-hydroxybutyrate) scaffolds. International Journal of Artificial Organs, 2012, 35, 1015-1024.	0.7	10
76	Fabrication, characterization and examination of <i>in vitro</i> of baghdadite nanoparticles for biomedical applications. Materials Research Express, 2019, 6, 095411.	0.8	10
77	Natural hydroxyapatite/diopside nanocomposite scaffold for bone tissue engineering applications: physical, mechanical, bioactivity and biodegradation evaluation. Materials Technology, 2022, 37, 36-48.	1.5	10
78	Characterization of Silk/Poly 3-Hydroxybutyrate-chitosan-multi-walled Carbon Nanotube Micro-nano Scaffold: A New Hybrid Scaffold for Tissue Engineering Applications. Journal of Medical Signals and Sensors, 2018, 8, 46.	0.5	10
79	Influence of Poly (Lactide-Co-Glycolide) Type and Gamma Irradiation on the Betamethasone Acetate Release from the In Situ Forming Systems. Current Drug Delivery, 2009, 6, 184-191.	0.8	9
80	Mechanical Evaluation of nHAp Scaffold Coated with Poly-3-Hydroxybutyrate for Bone Tissue Engineering. Journal of Nanoscience and Nanotechnology, 2013, 13, 1555-1562.	0.9	9
81	Bonding Strength, Hardness and Bioactivity of Nano Bioglass-Titania Nano Composite Coating Deposited on NiTi Nails. Current Nanoscience, 2011, 7, 568-575.	0.7	8
82	In Vitro and In Vivo Evaluation of Poly (3-hydroxybutyrate)/Carbon Nanotubes Electrospun Scaffolds for Periodontal Ligament Tissue Engineering. Journal of Dentistry, 2020, 21, 18-30.	0.1	8
83	Assessing the physical and mechanical properties of poly 3â€hydroxybutyrateâ€chitosanâ€multiâ€walled carbon nanotube/silk nano–micro composite scaffold for longâ€term healing tissue engineering applications. Micro and Nano Letters, 2018, 13, 829-834.	0.6	7
84	Optimizing the mechanical properties of a bi-layered knitted/nanofibrous esophageal prosthesis using artificial intelligence. E-Polymers, 2016, 16, 359-371.	1.3	6
85	<i>In vitro</i> bioactivity of baghdadite-coated PCL –graphene nanocomposite scaffolds: mechanism of baghdadite and apatite formation. Materials Technology, 2021, 36, 761-770.	1.5	6
86	Mechanical behaviour, hybridisation and osteoblast activities of novel baghdadite/ PCL-graphene nanocomposite scaffold: viability, cytotoxicity and calcium activity. Materials Technology, 2022, 37, 472-485.	1.5	6
87	Evaluation of physical and mechanical properties of B-tri-calcium phosphate/poly-3-hydroxybutyrate nanocomposite scaffold for bone tissue engineering application. Scientia Iranica, 2017, 24, 1654-1668.	0.3	6
88	Preparing nanocomposite fibrous scaffolds of P3HB/nHA for bone tissue engineering. , 2010, , .		4
89	Cytotoxicity assessment of polyhydroxybutyrate/chitosan/nano- bioglass nanofiber scaffolds by stem cells from human exfoliated deciduous teeth stem cells from dental pulp of exfoliated deciduous tooth. Dental Research Journal, 2018, 15, 136-145.	0.2	4
90	Improving the Mechanical Properties of Wire-Rope Silk Scaffold by Artificial Neural Network in Tendon and Ligament Tissue Engineering. Journal of Engineered Fibers and Fabrics, 2015, 10, 155892501501000.	0.5	3

#	Article	IF	CITATIONS
91	Electrospinning of aligned medical grade polyurethane nanofibres and evaluation of cell–scaffold interaction using SHED stem cells. Micro and Nano Letters, 2017, 12, 412-417.	0.6	2
92	Fabrication and Morphological Characterization of Poly (3Hydroxy Butyrate)/Nano Hydroxyapetite Nanocomposite Scaffold for Bone Tissue Engineering. IFMBE Proceedings, 2010, , 833-836.	0.2	2
93	Mechanical Property of Poly (3-hydroxybutyrate)/Bioglass Nanocomposite Scaffolds for Bone Tissue Engineering. IFMBE Proceedings, 2010, , 1238-1241.	0.2	2
94	Characterization of Silk/Poly 3-Hydroxybutyrate-chitosan-multi-walled Carbon Nanotube Micro-nano Scaffold: A New Hybrid Scaffold for Tissue Engineering Applications. Journal of Medical Signals and Sensors, 2018, 8, 46-52.	0.5	2
95	Biocompatibility evaluation of bioglass nanoparticles to chondrocyte cells by isothermal microcalorimetry. , 2010, , .		1
96	A Comparative Study of Articular Chondrocytes Metabolism on a Biodegradable Polyesterurethane Scaffold and Alginate in Different Oxygen Tension and pH. IFMBE Proceedings, 2009, , 1248-1251.	0.2	1
97	Poly(methyl methacrylate)-Based Composite Bone Cements With Different Types of Reinforcement Agents. , 2021, , 867-886.		0