Xiu-Qin Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4810999/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stereodivergent Synthesis of Carbocyclic Quaternary <scp>αâ€Amino</scp> Acid Derivatives Containing Two Contiguous Stereocenters. Chinese Journal of Chemistry, 2022, 40, 1059-1065.	2.6	12
2	Iridium-catalyzed asymmetric double allylic alkylation of azlactone: efficient access to chiral α-amino acid derivatives. Chemical Communications, 2022, 58, 3142-3145.	2.2	5
3	Stereodivergent synthesis of enantioenriched azepino[3,4,5- <i>cd</i>]-indoles <i>via</i> cooperative Cu/Ir-catalyzed asymmetric allylic alkylation and intramolecular Friedel–Crafts reaction. Chemical Science, 2022, 13, 4801-4812.	3.7	32
4	Asymmetric Synthesis of Chiral Aza-macrodiolides via Iridium-Catalyzed Cascade Allylation/Macrolactonization. Organic Letters, 2022, 24, 2579-2584.	2.4	8
5	Facile access to chiral 1-pyrrolines through Rh-catalyzed enantioselective partial hydrogenation of unprotected simple pyrroles. Chinese Chemical Letters, 2022, , .	4.8	3
6	Copper-catalyzed asymmetric propargylic substitution with salicylaldehyde-derived imine esters. Chemical Communications, 2022, 58, 8552-8555.	2.2	2
7	Rational design of perfectly oriented thermally activated delayed fluorescence emitter for efficient red electroluminescence. Science China Materials, 2021, 64, 920-930.	3.5	27
8	Highly Chemo- and Enantioselective Rh-Catalyzed Hydrogenation of β-Sulfonyl-α,β-unsaturated Ketones: Access to Chiral γ-Ketosulfones. Organic Letters, 2021, 23, 19-24.	2.4	16
9	Ir-Catalyzed Asymmetric Tandem Allylation/ <i>Iso</i> -Pictet–Spengler Cyclization Reaction for the Enantioselective Construction of Tetrahydro-γ-carbolines. Organic Letters, 2021, 23, 706-710.	2.4	16
10	Synergistic Cu/Pd-catalyzed asymmetric allylation: a facile access to α-quaternary cysteine derivatives. Chemical Communications, 2021, 57, 6538-6541.	2.2	19
11	Nickel-Catalyzed Asymmetric Hydrogenation of Cyclic Alkenyl Sulfones, Benzo[<i>b</i>]thiophene 1,1-Dioxides, with Mechanistic Studies. Organic Letters, 2021, 23, 668-675.	2.4	18
12	A Computational Study of Asymmetric Hydrogenation of <scp>2â€Phenyl</scp> Acrylic Acids Catalyzed by a Rh(I) Catalyst with Ferrocenyl Chiral Bisphosphorus Ligand: The Role of <scp>Ionâ€Pair</scp> Interaction ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1616-1624.	2.6	4
13	Enantiodivergent Synthesis of Chiral Tetrahydroquinoline Derivatives via Ir-Catalyzed Asymmetric Hydrogenation: Solvent-Dependent Enantioselective Control and Mechanistic Investigations. ACS Catalysis, 2021, 11, 7281-7291.	5.5	32
14	Diastereoselective synthesis of functionalized tetrahydropyridazines containing indole scaffolds <i>via</i> an inverse-electron-demand aza-Diels–Alder reaction. Organic Chemistry Frontiers, 2021, 8, 4392-4398.	2.3	12
15	Pd-Catalyzed Asymmetric Hydroalkylation of 1,3-Dienes: Access to Unnatural α-Amino Acid Derivatives Containing Vicinal Quaternary and Tertiary Stereogenic Centers. Organic Letters, 2020, 22, 569-574.	2.4	40
16	Facile access to chiral 4-substituted chromanes through Rh-catalyzed asymmetric hydrogenation. Chinese Chemical Letters, 2020, 31, 1859-1862.	4.8	5
17	Iridium atalyzed Cycloisomerization of Alkynoic Acids: Synthesis of Unsaturated Lactones. Advanced Synthesis and Catalysis, 2020, 362, 782-788.	2.1	13
18	Noncovalent Interaction-Assisted Ferrocenyl Phosphine Ligands in Asymmetric Catalysis. Accounts of Chemical Research, 2020, 53, 1905-1921.	7.6	47

#	Article	IF	CITATIONS
19	Efficient Access to Chiral 2-Oxazolidinones via Ni-Catalyzed Asymmetric Hydrogenation: Scope Study, Mechanistic Explanation, and Origin of Enantioselectivity. ACS Catalysis, 2020, 10, 11153-11161.	5.5	41
20	Stereodivergent Synthesis of α-Quaternary Serine and Cysteine Derivatives Containing Two Contiguous Stereogenic Centers via Synergistic Cu/Ir Catalysis. Organic Letters, 2020, 22, 4852-4857.	2.4	54
21	Synthesis of chiral α-substituted α-amino acid and amine derivatives through Ni-catalyzed asymmetric hydrogenation. Chemical Communications, 2020, 56, 4934-4937.	2.2	19
22	Sequential Irâ€Catalyzed Allylation/ 2â€azaâ€Cope Rearrangement Strategy for the Construction of Chiral Homoallylic Amines â€. Chinese Journal of Chemistry, 2020, 38, 807-811.	2.6	13
23	Recent Advances of Nickel-Catalyzed Homogeneous Asymmetric Hydrogenation. Chinese Journal of Organic Chemistry, 2020, 40, 1096.	0.6	25
24	Nickel-Catalyzed Asymmetric Hydrogenation of Cyclic Sulfamidate Imines: Efficient Synthesis of Chiral Cyclic Sulfamidates. IScience, 2019, 19, 63-73.	1.9	31
25	Efficient synthesis of chiral β-hydroxy sulfones <i>via</i> iridium-catalyzed hydrogenation. Organic and Biomolecular Chemistry, 2019, 17, 785-788.	1.5	21
26	Enantioselective Access to Chiral Cyclic Sulfamidates Through Iridium atalyzed Asymmetric Hydrogenation. Advanced Synthesis and Catalysis, 2019, 361, 1582-1586.	2.1	14
27	Efficient synthesis of chiral 2,3-dihydro-benzo[<i>b</i>]thiophene 1,1-dioxides <i>via</i> Rh-catalyzed hydrogenation. Chemical Science, 2019, 10, 2507-2512.	3.7	17
28	Synthesis of Chiral β-Borylated Carboxylic Esters via Nickel-Catalyzed Asymmetric Hydrogenation. Organic Letters, 2019, 21, 3923-3926.	2.4	26
29	Efficient access to chiral dihydrobenzoxazinones via Rh-catalyzed hydrogenation. RSC Advances, 2019, 9, 15466-15469.	1.7	1
30	Highly efficient Ir-catalyzed asymmetric hydrogenation of benzoxazinones and derivatives with a BrA _s nsted acid cocatalyst. Chemical Science, 2019, 10, 4328-4333.	3.7	25
31	Efficient Access to Chiral βâ€Borylated Carboxylic Esters via Rhâ€Catalyzed Hydrogenation. Advanced Synthesis and Catalysis, 2019, 361, 2844-2848.	2.1	11
32	lridium atalyzed Asymmetric Hydrogenation of Halogenated Ketones for the Efficient Construction of Chiral Halohydrins. Advanced Synthesis and Catalysis, 2018, 360, 2119-2124.	2.1	31
33	Highly enantioselective Ir/f-amphox-catalyzed hydrogenation of ketoamides: efficient access to chiral hydroxy amides. Organic Chemistry Frontiers, 2018, 5, 2000-2003.	2.3	16
34	Synthesis of chiral seven-membered β-substituted lactams <i>via</i> Rh-catalyzed asymmetric hydrogenation. Organic and Biomolecular Chemistry, 2018, 16, 8819-8823.	1.5	12
35	lridium-Catalyzed Asymmetric Hydrogenation of Tetrasubstituted α-Fluoro-β-enamino Esters: Efficient Access to Chiral α-Fluoro-β-amino Esters with Two Adjacent Tertiary Stereocenters. Organic Letters, 2018, 20, 6349-6353.	2.4	24
36	Rh-Catalyzed Asymmetric Hydrogenation of β-Substituted-β-thio-α,β-unsaturated Esters: Expeditious Access to Chiral Organic Sulfides. Organic Letters, 2018, 20, 5636-5639.	2.4	22

#	Article	IF	CITATIONS
37	Metal-Free Etherification of Aryl Methyl Ether Derivatives by C–OMe Bond Cleavage. Organic Letters, 2018, 20, 4267-4272.	2.4	32
38	Enantioselective Access to Chiral 2-Substituted 2,3-Dihydrobenzo[1,4]dioxane Derivatives through Rh-Catalyzed Asymmetric Hydrogenation. Organic Letters, 2018, 20, 4173-4177.	2.4	22
39	NHCâ€Catalyzed Electrophilic Trifluoromethylation: Efficient Synthesis of γâ€Trifluoromethyl α,βâ€Unsaturated Esters. Angewandte Chemie - International Edition, 2018, 57, 12097-12101.	7.2	27
40	NHCâ€Catalyzed Electrophilic Trifluoromethylation: Efficient Synthesis of γâ€Trifluoromethyl α,βâ€Unsaturated Esters. Angewandte Chemie, 2018, 130, 12273-12277.	1.6	11
41	lridium/fâ€Ampholâ€catalyzed Efficient Asymmetric Hydrogenation of Benzoâ€fused Cyclic Ketones. Advanced Synthesis and Catalysis, 2018, 360, 4319-4324.	2.1	22
42	Asymmetric hydrogenation of α-hydroxy ketones with an iridium/f-amphox catalyst: efficient access to chiral 1,2-diols. Organic Chemistry Frontiers, 2017, 4, 555-559.	2.3	31
43	Iridium catalysts with modular axial-unfixed biphenyl phosphine–oxazoline ligands: asymmetric hydrogenation of α,β-unsaturated carboxylic acids. Organic Chemistry Frontiers, 2017, 4, 627-630.	2.3	14
44	Iridium-Catalyzed Asymmetric Hydrogenation of Ketones with Accessible and Modular Ferrocene-Based Amino-phosphine Acid (f-Ampha) Ligands. Organic Letters, 2017, 19, 690-693.	2.4	79
45	Efficient access to chiral 1,2-amino alcohols via Ir/f-amphox-catalyzed asymmetric hydrogenation of α-amino ketones. Organic Chemistry Frontiers, 2017, 4, 1499-1502.	2.3	32
46	Rh/Wudaphos-Catalyzed Asymmetric Hydrogenation of Sodium α-Arylethenylsulfonates: A Method To Access Chiral α-Arylethylsulfonic Acids. Organic Letters, 2017, 19, 2678-2681.	2.4	17
47	Enzymeâ€Inspired Chiral Secondaryâ€Phosphineâ€Oxide Ligand with Dual Noncovalent Interactions for Asymmetric Hydrogenation. Angewandte Chemie, 2017, 129, 6912-6916.	1.6	22
48	Enzymeâ€Inspired Chiral Secondaryâ€Phosphineâ€Oxide Ligand with Dual Noncovalent Interactions for Asymmetric Hydrogenation. Angewandte Chemie - International Edition, 2017, 56, 6808-6812.	7.2	60
49	Enantioselective and Diastereoselective Construction of Chiral Amino Alcohols by Iridium–f-Amphox-Catalyzed Asymmetric Hydrogenation via Dynamic Kinetic Resolution. Organic Letters, 2017, 19, 2548-2551.	2.4	41
50	Enantioselective Synthesis of Chiral 3â€Substitutedâ€3â€silylpropionic Esters <i>via</i> Rhodium/Bisphosphineâ€Thioureaâ€Catalyzed Asymmetric Hydrogenation. Advanced Synthesis and Catalysis, 2017, 359, 2585-2589.	2.1	14
51	Asymmetric hydrogenation of maleic anhydrides catalyzed by Rh/bisphosphine-thiourea: efficient construction of chiral succinic anhydrides. Chemical Communications, 2017, 53, 4226-4229.	2.2	24
52	Rh/SPO-WudaPhos-Catalyzed Asymmetric Hydrogenation of α-Substituted Ethenylphosphonic Acids via Noncovalent Ion-Pair Interaction. Organic Letters, 2017, 19, 4375-4378.	2.4	24
53	Catalytic Asymmetric Desymmetrization of Cyclopentendiones via Diels–Alder Reaction of 3-Hydroxy-2-pyrones: Construction of Multifunctional Bridged Tricyclic Lactones. Organic Letters, 2017, 19, 4532-4535.	2.4	32
54	A new ferrocenyl bisphosphorus ligand for the asymmetric hydrogenation of α-methylene-γ-keto-carboxylic acids. Chemical Communications, 2017, 53, 9785-9788.	2.2	25

#	Article	IF	CITATIONS
55	Highly Enantioselective Asymmetric Hydrogenation of Carboxy-Directed α,α-Disubstituted Terminal Olefins via the Ion Pair Noncovalent Interaction. Organic Letters, 2017, 19, 6474-6477.	2.4	20
56	Highly stereoselective synthesis and application of P-chiral ferrocenyl bisphosphorus ligands for asymmetric hydrogenation. Organic Chemistry Frontiers, 2017, 4, 2034-2038.	2.3	23
57	Access to Chiral Seven-Member Cyclic Amines via Rh-Catalyzed Asymmetric Hydrogenation. Organic Letters, 2017, 19, 3855-3858.	2.4	51
58	Readily Accessible and Highly Efficient Ferroceneâ€Based Aminoâ€Phosphineâ€Alcohol (fâ€Amphol) Ligands for Iridiumâ€Catalyzed Asymmetric Hydrogenation of Simple Ketones. Chemistry - A European Journal, 2017, 23, 970-975.	1.7	67
59	Recent Advances in Dynamic Kinetic Resolution by Chiral Bifunctional (Thio)urea- and Squaramide-Based Organocatalysts. Molecules, 2016, 21, 1327.	1.7	22
60	Rhodium/Yanphos-Catalyzed Asymmetric Interrupted Intramolecular Hydroaminomethylation of <i>trans</i> -1,2-Disubstituted Alkenes. Journal of the American Chemical Society, 2016, 138, 9017-9020.	6.6	66
61	Nâ€Heterocyclic Carbene Catalyzed γâ€Dihalomethylenation of Enals by Singleâ€Electron Transfer. Angewandte Chemie, 2016, 128, 16015-16018.	1.6	39
62	Rhodium-catalyzed asymmetric hydrogenation of unprotected β-enamine phosphonates. Organic and Biomolecular Chemistry, 2016, 14, 4582-4584.	1.5	16
63	Recent progress in rhodium-catalyzed hydroaminomethylation. Organic Chemistry Frontiers, 2016, 3, 1359-1370.	2.3	64
64	Rhodium/bisphosphine-thiourea-catalyzed enantioselective hydrogenation of α,β-unsaturated N-acylpyrazoles. Chemical Communications, 2016, 52, 11677-11680.	2.2	27
65	Highly Enantioselective Synthesis of Chiral Succinimides via Rh/Bisphosphine-Thiourea-Catalyzed Asymmetric Hydrogenation. ACS Catalysis, 2016, 6, 6214-6218.	5.5	65
66	Chiral Ligands for Rhodium atalyzed Asymmetric Hydroformylation: A Personal Account. Chemical Record, 2016, 16, 2674-2686.	2.9	19
67	Nâ€Heterocyclic Carbene Catalyzed γâ€Đihalomethylenation of Enals by Singleâ€Electron Transfer. Angewandte Chemie - International Edition, 2016, 55, 15783-15786.	7.2	114
68	Selective Rhodium-Catalyzed Hydroformylation of Alkynes to α,β-Unsaturated Aldehydes with a Tetraphosphoramidite Ligand. Organic Letters, 2016, 18, 3290-3293.	2.4	31
69	lridium Catalysts with f-Amphox Ligands: Asymmetric Hydrogenation of Simple Ketones. Organic Letters, 2016, 18, 2938-2941.	2.4	110
70	New synthetic strategy for chiral 2-oxazolidinones derivatives via rhodium-catalyzed asymmetric hydrogenation. Tetrahedron Letters, 2016, 57, 658-662.	0.7	20
71	Synthesis of Chiral β-Amino Nitroalkanes via Rhodium-Catalyzed Asymmetric Hydrogenation. Organic Letters, 2016, 18, 40-43.	2.4	52
72	New tetraphosphite ligands for regioselective linear hydroformylation of terminal and internal olefins. RSC Advances, 2016, 6, 14559-14562.	1.7	10

#	Article	IF	CITATIONS
73	Ferrocenyl chiral bisphosphorus ligands for highly enantioselective asymmetric hydrogenation via noncovalent ion pair interaction. Chemical Science, 2016, 7, 6669-6673.	3.7	60
74	Nâ€Heterocyclic Carbene Catalyzed Enantioselective αâ€Fluorination of Aliphatic Aldehydes and αâ€Chloro Aldehydes: Synthesis of αâ€Fluoro Esters, Amides, and Thioesters. Angewandte Chemie - International Edition, 2015, 54, 660-663.	7.2	61
75	Metalorganocatalysis: cooperating transition-metal catalysis and organocatalysis through a covalent bond. Organic Chemistry Frontiers, 2015, 2, 1425-1431.	2.3	32
76	Catalytic Asymmetric α-Aldol Reaction of Vinylogous <i>N</i> -Heterocyclic Carbene Enolates: Formation of Quaternary and Labile Tertiary Stereocenters. Organic Letters, 2014, 16, 2450-2453.	2.4	38
77	Organocatalytic asymmetric sulfa-Michael addition of thiols to trans-3,3,3-trifluoropropenyl phenyl sulfone. Tetrahedron Letters, 2013, 54, 4509-4511.	0.7	18
78	N-Heterocyclic Carbene (NHC) Catalyzed Synthesis of α,α-Difluoro Esters. Synlett, 2013, 24, 1221-1224.	1.0	32
79	Organocatalytic asymmetric domino sulfa-Michael–aldol reactions of 2-mercaptobenzaldehyde with α,l²-unsaturated N-acylpyrazoles for the construction of thiochromane. Chemical Communications, 2012, 48, 7238.	2.2	66
80	Highly Efficient Catalytic Asymmetric Sulfaâ€Michael Addition of Thiols to <i>trans</i> â€4,4,4â€Trifluorocrotonoylpyrazole. Advanced Synthesis and Catalysis, 2012, 354, 1141-1147.	2.1	54
81	Organocatalytic Asymmetric Sulfa-Michael Addition of Thiols to 4,4,4-Trifluorocrotonates. Organic Letters, 2011, 13, 4426-4429.	2.4	75
82	Organocatalytic asymmetric Michael addition of α-aryl cyclopentanones to nitroolefins for construction of adjacent quaternary and tertiary stereocenters. Chemical Communications, 2010, 46, 6840.	2.2	46
83	Highly Enantioselective Direct Michael Addition of Nitroalkanes to Nitroalkenes Catalyzed by Amineâ^'Thiourea Bearing Multiple Hydrogen-Bonding Donors. Organic Letters, 2009, 11, 1265-1268.	2.4	75
84	Design, Synthesis and Application of Multifunctional Chiral Amiâ€nophosphine Catalyst for Highly Efficient Catalyst for Asymmetric Intermolecular Cross <scp>Rauhutâ€Currier</scp> Reaction. Chinese Journal of Chemistry, 0, , .	2.6	3