Xiaoxiao Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4810616/publications.pdf

Version: 2024-02-01

64 2,874 21 47
papers citations h-index g-index

64 64 64 1629
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nature Photonics, 2015, 9, 594-600.	31.4	459
2	Micro-combs: A novel generation of optical sources. Physics Reports, 2018, 729, 1-81.	25.6	448
3	Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation. Optica, 2014, 1, 137.	9.3	186
4	Normalâ€dispersion microcombs enabled by controllable mode interactions. Laser and Photonics Reviews, 2015, 9, L23.	8.7	159
5	Microresonator Kerr frequency combs with high conversion efficiency. Laser and Photonics Reviews, 2017, 11, 1600276.	8.7	153
6	High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation. Optica, 2016, 3, 1171.	9.3	148
7	Programmable Single-Bandpass Photonic RF Filter Based on Kerr Comb from a Microring. Journal of Lightwave Technology, 2014, 32, 3557-3565.	4.6	136
8	Thermal tuning of Kerr frequency combs in silicon nitride microring resonators. Optics Express, 2016, 24, 687.	3.4	118
9	Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators. Nature Communications, 2017, 8, 372.	12.8	108
10	Super-efficient temporal solitons in mutually coupled optical cavities. Nature Photonics, 2019, 13, 616-622.	31.4	103
11	Intracavity characterization of micro-comb generation in the single-soliton regime. Optics Express, 2016, 24, 10890.	3.4	101
12	High-resolution W-band ISAR imaging system utilizing a logic-operation-based photonic digital-to-analog converter. Optics Express, 2018, 26, 1978.	3.4	84
13	Second-harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation. Light: Science and Applications, 2017, 6, e16253-e16253.	16.6	83
14	Widely tunable single-bandpass microwave photonic filter employing a non-sliced broadband optical source. Optics Express, 2011, 19, 18423.	3.4	72
15	Microcomb-Based True-Time-Delay Network for Microwave Beamforming With Arbitrary Beam Pattern Control. Journal of Lightwave Technology, 2018, 36, 2312-2321.	4.6	68
16	Normal-dispersion microresonator Kerr frequency combs. Nanophotonics, 2016, 5, 244-262.	6.0	44
17	Highly reconfigurable microwave photonic single-bandpass filter with complex continuous-time impulse responses. Optics Express, 2012, 20, 26929.	3.4	36
18	All-Optical Arbitrary-Point Stable Quadruple Frequency Dissemination With Photonic Microwave Phase Conjugation. IEEE Photonics Journal, 2018, 10, 1-8.	2.0	36

#	Article	IF	Citations
19	Photonics-based wideband distributed coherent aperture radar system. Optics Express, 2018, 26, 33783.	3.4	28
20	Analysis and Compensation of Third-Order Dispersion Induced RF Distortions in Highly Reconfigurable Microwave Photonic Filters. Journal of Lightwave Technology, 2013, 31, 2263-2270.	4.6	26
21	Soliton regulation in microcavities induced by fundamental–second-harmonic mode coupling. Photonics Research, 2018, 6, 948.	7.0	25
22	Distributed coherent microwave photonic radar with a high-precision fiber-optic time and frequency network. Optics Express, 2020, 28, 31241.	3.4	22
23	Microwave photonics connected with microresonator frequency combs. Frontiers of Optoelectronics, 2016, 9, 238-248.	3.7	20
24	Tunable $360 \hat{A}^{\circ}$ photonic radio frequency phase shifter based on optical quadrature double-sideband modulation and differential detection. Optics Letters, 2011, 36, 4641.	3.3	16
25	Idler-free photonic microwave mixer using a broadband optical source and cascaded phase modulators. Optics Letters, 2012, 37, 1451.	3.3	15
26	A spurious frequencies suppression method for optical frequency comb based microwave photonic filter. Laser and Photonics Reviews, 2013, 7, L34-L38.	8.7	14
27	An Interleaved Broadband Photonic ADC Immune to Channel Mismatches Capable for High-Speed Radar Imaging. IEEE Photonics Journal, 2019, 11, 1-9.	2.0	13
28	Microresonator Frequency Combs for Integrated Microwave Photonics. IEEE Photonics Technology Letters, 2018, 30, 1814-1817.	2.5	12
29	OFDM Radar and Communication Joint System Using Opto-Electronic Oscillator With Phase Noise Degradation Analysis and Mitigation. Journal of Lightwave Technology, 2022, 40, 4101-4109.	4.6	12
30	A Photonics-Based Coherent Dual-Band Radar for Super-Resolution Range Profile. IEEE Photonics Journal, 2019, 11, 1-8.	2.0	11
31	Noise analysis in photonic true time delay systems based on broadband optical source and dispersion components. Applied Optics, 2009, 48, 658.	2.1	9
32	Tunable chirped microwave photonic filter employing a dispersive Mach–Zehnder structure. Optics Letters, 2011, 36, 3518.	3.3	9
33	All-optical microwave bandpass filter and phase shifter using a broadband optical source and an optical phase modulator. Optics Letters, 2012, 37, 1661.	3.3	9
34	Spectrum-Sliced Microwave Photonic Filter With an Improved Dynamic Range Based on a \${m LiNbO}_{3}\$ Phase Modulator and Balanced Detection. IEEE Photonics Technology Letters, 2012, 24, 775-777.	2.5	9
35	Tunable ultraflat optical frequency comb generator based on optoelectronic oscillator using dual-parallel Mach–Zehnder modulator. Optical Engineering, 2017, 56, 066115.	1.0	9
36	Photonics-Assisted Broadband Distributed Coherent Aperture Radar for High-Precision Imaging of Dim-Small Targets. IEEE Photonics Journal, 2019, 11, 1-9.	2.0	9

#	Article	IF	CITATIONS
37	A Microwave Photonics-based Inverse Synthetic Aperture Radar System. , 2017, , .		9
38	W-Band High-Q Microwave Photonic Filter With the Third-Order Dispersion Precompensation. Journal of Lightwave Technology, 2018, 36, 2152-2160.	4.6	8
39	Multicore Fiber-Enabled Stable Millimeter-Wave Local Oscillator Phase Dissemination Trunk Network. Journal of Lightwave Technology, 2019, 37, 5238-5245.	4.6	6
40	Precise Measurement of Fiber Third-Order Dispersion Using Transfer Function of a Microwave Photonic Filter. Journal of Lightwave Technology, 2017, 35, 4865-4870.	4.6	5
41	Wideband Radar Signal Distribution With an Idler-Free Photonic Microwave Frequency Shifter. IEEE Photonics Technology Letters, 2018, 30, 1948-1951.	2.5	4
42	A Microwave Photonics Equalizer for Overcoming Dispersion-Induced Distortions on Wideband Signals in Radio-Over-Fiber Links. Journal of Lightwave Technology, 2019, 37, 736-743.	4.6	4
43	A large-range autofocus microwave photonic radar based on adaptive spatial filtering along the range direction. Optics Communications, 2020, 477, 126354.	2.1	4
44	Microwave Photonic Wideband Distributed Coherent Aperture Radar With High Robustness to Time Synchronization Error. Journal of Lightwave Technology, 2021, 39, 347-356.	4.6	4
45	Photonic-Assisted RF Self-Interference Cancellation Based on Optical Spectrum Processing. Journal of Lightwave Technology, 2022, 40, 2015-2022.	4.6	4
46	Microwave photonic filter with arbitrary tap profile generated by polarization control in a LiNbO<inf> 3</inf> phase modulator. , 2011 , , .		3
47	A Segmented Photonic Digital-to-analog Converter with a High Effective Number of Bits. , 2019, , .		3
48	High-resolution imaging of a high-speed target based on a reconfigurable photonic fractional Fourier transformer. Optics Express, 2021, 29, 19985.	3.4	3
49	High-precision fiber-optic two-way time transfer network with time–frequency transform measurement. Optics Communications, 2020, 477, 126342.	2.1	2
50	Noise analysis of photonic digital-to-analog converters. Applied Optics, 2022, 61, 4055.	1.8	2
51	Mitigation of RF power degradation in dispersion-based photonic true time delay systems. , 2010, , .		1
52	Microwave photonics based radar TRx modules and their application in ISAR. , 2017, , .		1
53	Microcomb based microwave true-time-delay beamforming. , 2017, , .		1
54	Single-bandpass microwave photonic filter with wide tuning range and no baseband response. , 2011, , .		0

#	Article	IF	CITATIONS
55	Photonic RF phase shifter/modulator using an optical phase modulator and differential detection. , 2012, , .		O
56	Spurious-free microwave photonic filter employing optical frequency comb with quadratic phase. , $2013, , .$		0
57	Frequency Combs from Normal Dispersion Silicon Nitride Microresonators. , 2014, , .		O
58	High-precision microwave photonic true time delay measurement based on multi-channel microwave interference. , $2016, , .$		0
59	Coherent Kerr frequency comb generation in microresonators with χ(2)and χ(3)nonlinearities. , 2016, , .		O
60	A photonic approach for LFM bandwidth broadening based on sub-chirp signal splicing. , 2018, , .		0
61	On-Chip Optical Frequency Comb Generation for RF Photonic Applications. , 2018, , .		O
62	Coupled Cavity Solitons with High Conversion Efficiency. , 2019, , .		0
63	High-efficiency Kerr frequency combs for microwave photonics. , 2019, , .		O
64	Photonic time-frequency filter based on the software-defined time-frequency prism. Optics Letters, 2022, 47, 3576.	3.3	0