K Heran Darwin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4810323/publications.pdf

Version: 2024-02-01

71 papers 4,196 citations

30 h-index 62 g-index

79 all docs

79 docs citations

79 times ranked

3592 citing authors

#	Article	lF	Citations
1	Sciâ€Con. EMBO Reports, 2022, , e54958.	4.5	1
2	Bench science. EMBO Reports, 2022, 23, e54435.	4.5	0
3	The aldehyde hypothesis: metabolic intermediates as antimicrobial effectors. Open Biology, 2022, 12, 220010.	3.6	6
4	Waste management. EMBO Reports, 2022, , e55283.	4.5	1
5	Structural determinants of regulated proteolysis in pathogenic bacteria by ClpP and the proteasome. Current Opinion in Structural Biology, 2021, 67, 120-126.	5.7	10
6	The mycobacterial proteasomal ATPase Mpa forms a gapped ring to engage the 20S proteasome. Journal of Biological Chemistry, 2021, 296, 100713.	3.4	4
7	After the year of the dumpster fire. EMBO Reports, 2021, 22, e52556.	4.5	1
8	Work life balance?. EMBO Reports, 2021, 22, e52874.	4.5	3
9	Macrocyclic Peptides that Selectively Inhibit the <i>Mycobacterium tuberculosis</i> Proteasome. Journal of Medicinal Chemistry, 2021, 64, 6262-6272.	6.4	9
10	Role of the transcriptional regulator SP140 in resistance to bacterial infections via repression of type I interferons. ELife, 2021, 10 , .	6.0	29
11	<i>Mycobacterium tuberculosis</i> : the honey badger of pathogens. EMBO Reports, 2021, 22, e53619.	4.5	2
12	Development of Tyrphostin Analogues to Study Inhibition of the <i>Mycobacterium tuberculosis</i> Pup Proteasome System**. ChemBioChem, 2021, 22, 3082-3089.	2.6	4
13	Dr. Manners. EMBO Reports, 2021, 22, e52066.	4.5	O
14	Mycobacterium tuberculosis Rv0991c Is a Redox-Regulated Molecular Chaperone. MBio, 2020, 11, .	4.1	7
15	Bandwagoning. EMBO Reports, 2020, 21, e51765.	4.5	2
16	Mycobacterium tuberculosis Rv2700 Contributes to Cell Envelope Integrity and Virulence. Journal of Bacteriology, 2019, 201, .	2.2	8
17	Type I interferon-driven susceptibility to Mycobacterium tuberculosis is mediated by IL-1Ra. Nature Microbiology, 2019, 4, 2128-2135.	13.3	112
18	The <i>Mycobacterium tuberculosis</i> Pup-proteasome system regulates nitrate metabolism through an essential protein quality control pathway. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3202-3210.	7.1	22

#	Article	IF	CITATIONS
19	Characterization of Guided Entry of Tail-Anchored Proteins 3 Homologues in Mycobacterium tuberculosis. Journal of Bacteriology, 2019, 201, .	2.2	4
20	Biology and Biochemistry of Bacterial Proteasomes. Sub-Cellular Biochemistry, 2019, 93, 339-358.	2.4	5
21	Proteasome substrate capture and gate opening by the accessory factor PafE from Mycobacterium tuberculosis. Journal of Biological Chemistry, 2018, 293, 4713-4723.	3.4	15
22	Cytokinin Signaling in Mycobacterium tuberculosis. MBio, 2018, 9, .	4.1	28
23	Loss-of-Function Mutations in HspR Rescue the Growth Defect of a Mycobacterium tuberculosis Proteasome Accessory Factor E (<i>pafE</i>) Mutant. Journal of Bacteriology, 2017, 199, .	2.2	8
24	<i>Mycobacterium tuberculosis</i> Proteasome Accessory Factor A (PafA) Can Transfer Prokaryotic Ubiquitin-Like Protein (Pup) between Substrates. MBio, 2017, 8, .	4.1	21
25	Structural Analysis of Mycobacterium tuberculosis Homologues of the Eukaryotic Proteasome Assembly Chaperone 2 (PAC2). Journal of Bacteriology, 2017, 199, .	2.2	3
26	<i>Mycobacterium tuberculosis</i> proteasomal ATPase Mpa has a βâ€grasp domain that hinders docking with the proteasome core protease. Molecular Microbiology, 2017, 105, 227-241.	2.5	21
27	Bacterial Proteasomes: Mechanistic and Functional Insights. Microbiology and Molecular Biology Reviews, 2017, 81, .	6.6	36
28	<i>Mycobacterium tuberculosis</i> copper-regulated protein SocB is an intrinsically disordered protein that folds upon interaction with a synthetic phospholipid bilayer. Proteins: Structure, Function and Bioinformatics, 2016, 84, 193-200.	2.6	4
29	Structural analysis of the dodecameric proteasome activator PafE in <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1983-92.	7.1	21
30	Game of †Somes: Protein Destruction for Mycobacterium tuberculosis Pathogenesis. Trends in Microbiology, 2016, 24, 26-34.	7.7	16
31	Copper homeostasis in Mycobacterium tuberculosis. Metallomics, 2015, 7, 929-934.	2.4	30
32	Proteasomal Control of Cytokinin Synthesis Protects Mycobacterium tuberculosis against Nitric Oxide. Molecular Cell, 2015, 57, 984-994.	9.7	101
33	Mycobacterium tuberculosis and Copper: A Newly Appreciated Defense against an Old Foe?. Journal of Biological Chemistry, 2015, 290, 18962-18966.	3.4	32
34	An adenosine triphosphate-independent proteasome activator contributes to the virulence of <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1763-72.	7.1	40
35	Radical Sabbaticals. Cell, 2015, 163, 788-789.	28.9	3
36	Bacterial Proteasomes. Annual Review of Microbiology, 2015, 69, 109-127.	7.3	39

3

#	Article	IF	CITATIONS
37	The Copper-Responsive RicR Regulon Contributes to Mycobacterium tuberculosis Virulence. MBio, 2014, 5, .	4.1	61
38	The Pup-Proteasome System of Mycobacteria. Microbiology Spectrum, 2014, 2, .	3.0	11
39	The Pup-Proteasome System of Mycobacterium tuberculosis. Sub-Cellular Biochemistry, 2013, 66, 267-295.	2.4	26
40	Mycobacterium tuberculosis proteasomes, pupylation and pathogenesis. FASEB Journal, 2013, 27, 326.3.	0.5	0
41	Mycobacterium tuberculosis Prokaryotic Ubiquitin-like Protein-deconjugating Enzyme Is an Unusual Aspartate Amidase. Journal of Biological Chemistry, 2012, 287, 37522-37529.	3.4	20
42	Copper in Microbial Pathogenesis: Meddling with the Metal. Cell Host and Microbe, 2012, 11, 106-115.	11.0	241
43	Synthesis and Evaluation of a Selective Fluorogenic Pup Derived Assay Reagent for Dop, a Potential Drug Target in <i>Mycobacterium tuberculosis</i> ChemBioChem, 2012, 13, 2056-2060.	2.6	14
44	Pupylation: Proteasomal Targeting by a Protein Modifier in Bacteria. Methods in Molecular Biology, 2012, 832, 151-160.	0.9	11
45	Reconstitution of the <i>Mycobacterium tuberculosis</i> pupylation pathway in <i>Escherichia coli</i> EMBO Reports, 2011, 12, 863-870.	4.5	46
46	A novel copperâ€responsive regulon in <i>Mycobacterium tuberculosis</i> . Molecular Microbiology, 2011, 79, 133-148.	2.5	141
47	SAMPyling proteins in archaea. Trends in Biochemical Sciences, 2010, 35, 348-351.	7.5	12
48	Molecular analysis of the prokaryotic ubiquitin-like protein (Pup) conjugation pathway in Mycobacterium tuberculosis. Molecular Microbiology, 2010, 77, 1123-1135.	2.5	90
49	Binding-induced folding of prokaryotic ubiquitin-like protein on the Mycobacterium proteasomal ATPase targets substrates for degradation. Nature Structural and Molecular Biology, 2010, 17, 1352-1357.	8.2	109
50	Pupylation versus ubiquitylation: tagging for proteasome-dependent degradation. Cellular Microbiology, 2010, 12, 424-431.	2.1	41
51	Prokayrotic Ubiquitin-Like Protein (Pup) Proteome of Mycobacterium tuberculosis. PLoS ONE, 2010, 5, e8589.	2.5	126
52	Prokaryotic Ubiquitin-Like Protein Provides a Two-Part Degron to <i>Mycobacterium</i> Proteasome Substrates. Journal of Bacteriology, 2010, 192, 2933-2935.	2.2	57
53	"Depupylation―of Prokaryotic Ubiquitin-like Protein from Mycobacterial Proteasome Substrates. Molecular Cell, 2010, 39, 821-827.	9.7	110
54	Pupylation. Sub-Cellular Biochemistry, 2010, 54, 149-157.	2.4	13

#	Article	IF	Citations
55	Structural Insights on the Mycobacterium tuberculosis Proteasomal ATPase Mpa. Structure, 2009, 17, 1377-1385.	3.3	65
56	Prokaryotic ubiquitin-like protein (Pup), proteasomes and pathogenesis. Nature Reviews Microbiology, 2009, 7, 485-491.	28.6	93
57	The Mycobacterium tuberculosis proteasome: more than just a barrel-shaped protease. Microbes and Infection, 2009, 11, 1150-1155.	1.9	27
58	Prokaryotic Ubiquitin-Like Protein Pup Is Intrinsically Disordered. Journal of Molecular Biology, 2009, 392, 208-217.	4.2	97
59	Ubiquitin-Like Protein Involved in the Proteasome Pathway of <i>Mycobacterium tuberculosis</i> Science, 2008, 322, 1104-1107.	12.6	339
60	Characterization of the Proteasome Accessory Factor (paf) Operon in Mycobacterium tuberculosis. Journal of Bacteriology, 2007, 189, 3044-3050.	2.2	53
61	Self-compartmentalized bacterial proteases and pathogenesis. Molecular Microbiology, 2006, 60, 553-562.	2.5	119
62	Identification of substrates of the Mycobacterium tuberculosis proteasome. EMBO Journal, 2006, 25, 5423-5432.	7.8	98
63	A glutamate-alanine-leucine (EAL) domain protein of Salmonella controls bacterial survival in mice, antioxidant defence and killing of macrophages: role of cyclic diGMP. Molecular Microbiology, 2005, 56, 1234-1245.	2.5	135
64	Role for Nucleotide Excision Repair in Virulence of Mycobacterium tuberculosis. Infection and Immunity, 2005, 73, 4581-4587.	2.2	112
65	Characterization of a Mycobacterium tuberculosis proteasomal ATPase homologue. Molecular Microbiology, 2004, 55, 561-571.	2.5	119
66	The Proteasome of Mycobacterium tuberculosis Is Required for Resistance to Nitric Oxide. Science, 2003, 302, 1963-1966.	12.6	489
67	SigE Is a Chaperone for the Salmonella enterica Serovar Typhimurium Invasion Protein SigD. Journal of Bacteriology, 2001, 183, 1452-1454.	2.2	50
68	The putative invasion protein chaperone SicA acts together with InvF to activate the expression of Salmonella typhimurium virulence genes. Molecular Microbiology, 2000, 35, 949-960.	2.5	113
69	Molecular Basis of the Interaction of <i>Salmonella < /i> with the Intestinal Mucosa. Clinical Microbiology Reviews, 1999, 12, 405-428.</i>	13.6	359
70	InvF Is Required for Expression of Genes Encoding Proteins Secreted by the SPI1 Type III Secretion Apparatus inSalmonella typhimurium. Journal of Bacteriology, 1999, 181, 4949-4954.	2.2	143
71	The Pup-Proteasome System of Mycobacteria. , 0, , 667-680.		0