
Ashish Kumar Solanki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4810052/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Small molecules targeting the NADH-binding pocket of VDAC modulate mitochondrial metabolism in hepatocarcinoma cells. Biomedicine and Pharmacotherapy, 2022, 150, 112928.	5.6	6
2	The role of motor proteins in photoreceptor protein transport and visual function. Ophthalmic Genetics, 2022, , 1-16.	1.2	2
3	Loss of Motor Protein MYO1C Causes Rhodopsin Mislocalization and Results in Impaired Visual Function. Cells, 2021, 10, 1322.	4.1	8
4	Targeting myosin 1c inhibits murine hepatic fibrogenesis. American Journal of Physiology - Renal Physiology, 2021, 320, G1044-G1053.	3.4	5
5	Phosphorylation of slit diaphragm proteins NEPHRIN and NEPH1 upon binding of HGF promotes podocyte repair. Journal of Biological Chemistry, 2021, 297, 101079.	3.4	4
6	The Use of High-Throughput Transcriptomics to Identify Pathways with Therapeutic Significance in Podocytes. International Journal of Molecular Sciences, 2020, 21, 274.	4.1	7
7	A Functional Binding Domain in the Rbpr2 Receptor Is Required for Vitamin A Transport, Ocular Retinoid Homeostasis, and Photoreceptor Cell Survival in Zebrafish. Cells, 2020, 9, 1099.	4.1	9
8	Mutations in KIRREL1, a slit diaphragm component, cause steroid-resistant nephrotic syndrome. Kidney International, 2019, 96, 883-889.	5.2	23
9	Development of a novel cell-based assay to diagnose recurrent focal segmental glomerulosclerosis patients. Kidney International, 2019, 95, 708-716.	5.2	10
10	Disruption of the exocyst induces podocyte loss and dysfunction. Journal of Biological Chemistry, 2019, 294, 10104-10119.	3.4	17
11	Mitochondrial biogenesis induced by the \hat{l}^22 -adrenergic receptor agonist formoterol accelerates podocyte recovery from glomerular injury. Kidney International, 2019, 96, 656-673.	5.2	44
12	The motor protein Myo1c regulates transforming growth factor-β–signaling and fibrosis in podocytes. Kidney International, 2019, 96, 139-158.	5.2	20
13	A Novel CLCN5 Mutation Associated WithÂFocal Segmental Glomerulosclerosis andÂPodocyte Injury. Kidney International Reports, 2018, 3, 1443-1453.	0.8	22
14	Targeting Neph1 and ZO-1 protein-protein interaction in podocytes prevents podocyte injury and preserves glomerular filtration function. Scientific Reports, 2017, 7, 12047.	3.3	19
15	Structural Analysis of the Myo1c and Neph1 Complex Provides Insight into the Intracellular Movement of Neph1. Molecular and Cellular Biology, 2016, 36, 1639-1654.	2.3	34
16	Adriamycin susceptibility among C57BL/6 substrains. Kidney International, 2016, 89, 721-723.	5.2	14
17	Global Shape and Ligand Binding Efficiency of the HIV-1-neutralizing Antibodies Differ from Those of Antibodies That Cannot Neutralize HIV-1. Journal of Biological Chemistry, 2014, 289, 34780-34800.	3.4	19
18	Visualizing the elusive open shape of G-actin in solution by SAXS data analysis. Biochemical and Biophysical Research Communications, 2013, 435, 740-744.	2.1	7

#	Article	IF	CITATIONS
19	Carrier protein influences immunodominance of a known epitope: Implication in peptide vaccine design. Vaccine, 2013, 31, 4682-4688.	3.8	8
20	SAXS data analysis and modeling of tetravalent neutralizing antibody CD4–IgG2 Ⱂ/+ HIV-1 gp120 revealed that first two gp120 bind to the same Fab arm. Biochemical and Biophysical Research Communications, 2011, 415, 680-685.	2.1	4
21	Evidence on How a Conserved Glycine in the Hinge Region of HapR Regulates Its DNA Binding Ability. Journal of Biological Chemistry, 2011, 286, 15043-15049.	3.4	30
22	Global structure of HIV-1 neutralizing antibody IgG1 b12 is asymmetric. Biochemical and Biophysical Research Communications, 2010, 391, 947-951.	2.1	20