Lin Lei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/480943/publications.pdf Version: 2024-02-01

LINTEL

#	Article	IF	CITATIONS
1	High-frequency operation of a mid-infrared interband cascade system at room temperature. Applied Physics Letters, 2016, 108, .	3.3	39
2	Long wavelength interband cascade infrared photodetectors operating at high temperatures. Journal of Applied Physics, 2016, 120, .	2.5	35
3	Interband cascade infrared photodetectors with long and very-long cutoff wavelengths. Infrared Physics and Technology, 2015, 70, 162-167.	2.9	32
4	Short-wavelength interband cascade infrared photodetectors operating above room temperature. Journal of Applied Physics, 2016, 119, .	2.5	30
5	Electrical gain in interband cascade infrared photodetectors. Journal of Applied Physics, 2018, 123, .	2.5	29
6	Current-matching <i>versus</i> non-current-matching in long wavelength interband cascade infrared photodetectors. Journal of Applied Physics, 2017, 122, .	2.5	21
7	Narrow-Bandgap Interband Cascade Thermophotovoltaic Cells. IEEE Journal of Photovoltaics, 2017, 7, 1462-1468.	2.5	20
8	High-temperature operation of interband cascade infrared photodetectors with cutoff wavelengths near 8     μ m. Optical Engineering, 2015, 54, 063103.	1.0	19
9	Midwavelength interband cascade infrared photodetectors with superlattice absorbers and gain. Optical Engineering, 2017, 57, 1.	1.0	18
10	Enhanced collection efficiencies and performance of interband cascade structures for narrow bandgap semiconductor thermophotovoltaic devices. Journal of Applied Physics, 2018, 124, .	2.5	17
11	Minority carrier lifetime in mid-wavelength interband cascade infrared photodetectors. Applied Physics Letters, 2018, 112, .	3.3	16
12	Molecular beam epitaxy of interband cascade structures with InAs/GaSb superlattice absorbers for long-wavelength infrared detection. Semiconductor Science and Technology, 2015, 30, 105029.	2.0	15
13	Resonant tunneling and multiple negative differential conductance features in long wavelength interband cascade infrared photodetectors. Applied Physics Letters, 2017, 111, .	3.3	15
14	Mid-wave interband cascade infrared photodetectors based on GaInAsSb absorbers. Semiconductor Science and Technology, 2016, 31, 105014.	2.0	11
15	Multistage interband cascade photovoltaic devices with a bandgap of 0.23ÂeV operating above room temperature. Science Bulletin, 2014, 59, 950-955.	1.7	7
16	Interband cascade infrared photodetectors with InAs/GaSb superlattice absorbers. Proceedings of SPIE, 2013, , .	0.8	6
17	Long-wavelength interband cascade infrared photodetectors towards high temperature operation. Proceedings of SPIE, 2017, , .	0.8	6
18	Gain and resonant tunneling in interband cascade IR photodetectors. , 2018, , .		5

IN	l F

#	Article	IF	CITATIONS
19	Epitaxial growth of elemental Sb quantum wells. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, .	1.2	3

20 Recent developments in interband cascade infrared photodetectors. , 2016, , .