Zhu Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4809252/publications.pdf

Version: 2024-02-01

567281 642732 27 578 15 23 citations h-index g-index papers 27 27 27 760 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	Stable Wearable Strain Sensors on Textiles by Direct Laser Writing of Graphene. ACS Applied Nano Materials, 2020, 3, 283-293.	5.0	73
2	Long-term wettability of titanium surfaces by combined femtosecond laser micro/nano structuring and chemical treatments. Applied Surface Science, 2018, 459, 257-262.	6.1	45
3	In situ laser synthesis of Pt nanoparticles embedded in graphene films for wearable strain sensors with ultra-high sensitivity and stability. Carbon, 2022, 190, 245-254.	10.3	43
4	Long term superhydrophobic and hybrid superhydrophobic/superhydrophilic surfaces produced by laser surface micro/nano surface structuring. Applied Surface Science, 2019, 466, 808-821.	6.1	38
5	A comparison of the characteristics of nanosecond, picosecond and femtosecond lasers generated Ag, TiO2 and Au nanoparticles in deionised water. Applied Physics A: Materials Science and Processing, 2015, 120, 1247-1260.	2.3	34
6	Production of stable superhydrophilic surfaces on 316L steel by simultaneous laser texturing and SiO2 deposition. Applied Surface Science, 2018, 427, 1135-1145.	6.1	29
7	How did the structural ZnO nanowire as antibacterial coatings control the switchable wettability. Applied Surface Science, 2019, 469, 593-606.	6.1	27
8	Laser solid-phase synthesis of single-atom catalysts. Light: Science and Applications, 2021, 10, 168.	16.6	27
9	Laser Direct Writing of Heteroatom (N and S)â€Doped Graphene from a Polybenzimidazole Ink Donor on Polyethylene Terephthalate Polymer and Glass Substrates. Small, 2018, 14, e1803143.	10.0	26
10	Characteristics of hierarchical micro/nano surface structure formation generated by picosecond laser processing in water and air. Applied Physics B: Lasers and Optics, 2017, 123, 1.	2.2	23
11	Laser Assisted Solution Synthesis of High Performance Graphene Supported Electrocatalysts. Advanced Functional Materials, 2020, 30, 2001756.	14.9	23
12	Picosecond laser generation of Ag–TiO2 nanoparticles with reduced energy gap by ablation in ice water and their antibacterial activities. Applied Physics A: Materials Science and Processing, 2015, 119, 1387-1396.	2.3	22
13	Laser induced molybdenum sulphide loading on doped graphene cathode for highly stable lithium sulphur battery. Communications Chemistry, 2019, 2, .	4.5	18
14	A bilayer TiO ₂ /Al ₂ O ₃ as the mesoporous scaffold for enhanced air stability of ambient-processed perovskite solar cells. Materials Advances, 2020, 1, 2057-2067.	5.4	18
15	Preparation and antibacterial properties of laser-generated silver–anatase nanocomposite film against <i>Escherichia coli</i> i>and <i>Staphylococcus aureus</i> . Nanotechnology, 2012, 23, 495708.	2.6	16
16	Comparison of characteristics of selected metallic and metal oxide nanoparticles produced by picosecond laser ablation at 532 and 1064Ânm wavelengths. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	16
17	A one-step laser process for rapid manufacture of mesoscopic perovskite solar cells prepared under high relative humidity. Sustainable Energy and Fuels, 2018, 2, 1216-1224.	4.9	13
18	Rapid fabrication of mesoporous TiO2 thin films by pulsed fibre laser for dye sensitized solar cells. Applied Surface Science, 2018, 428, 1089-1097.	6.1	12

Zни Liu

#	Article	lF	CITATION
19	3D Binderâ€free Integrated Electrodes Prepared by Phase Separation and Laser Induction (PSLI) Method for Oxygen Electrocatalysis and Zinc–Air Battery. Advanced Energy Materials, 2022, 12, .	19.5	12
20	Impact of halide additives on green antisolvent and high-humidity processed perovskite solar cells. Applied Surface Science, 2021, 536, 147949.	6.1	11
21	Laser-Assisted Ultrafast Fabrication of Crystalline Ta-Doped TiO ₂ for High-Humidity-Processed Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 15141-15153.	8.0	11
22	Sequential laser and ultrasonic wave generation of TiO2@Ag core-shell nanoparticles and their anti-bacterial properties. Lasers in Medical Science, 2016, 31, 263-273.	2.1	9
23	One-Step Fiber Laser Fabrication of Mesoporous and Compact TiO ₂ Layers for Enhanced Performance of Dye-Sensitized Solar Cells. ACS Sustainable Chemistry and Engineering, 2018, 6, 12299-12308.	6.7	9
24	Threshold reduction and yield improvement of semiconductor nanowire lasers <i>via</i> processing-related end-facet optimization. Nanoscale Advances, 2019, 1, 4393-4397.	4.6	9
25	Ultrafast and Scalable Laserâ€Induced Crystallization of Titanium Dioxide Films for Planar Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000562.	5.8	7
26	Investigation of plume dynamics during picosecond laser ablation of H13 steel using high-speed digital holography. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	6
27	Environmentally Friendly Single-Step Laser Synthesis of Three-Dimensional C–Si–SiC Micro/Nanoporous Composite Lithium-ion Battery Electrodes and Electrochemical Performance. ACS Applied Energy Materials, 0, , .	5.1	1