Svetlana A Santer

List of Publications by Citations

Source: https://exaly.com/author-pdf/4809185/svetlana-a-santer-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

101
papers

3,472
citations

33
h-index

57
g-index

135
ext. papers

5.6
avg, IF

5.28
L-index

#	Paper	IF	Citations
101	Visualizable Cylindrical Macromolecules with Controlled Stiffness from Backbones Containing Libraries of Self-Assembling Dendritic Side Groups. <i>Journal of the American Chemical Society</i> , 1998 , 120, 8619-8631	16.4	286
100	Main Chain Conformation and Anomalous Elution Behavior of Cylindrical Brushes As Revealed by GPC/MALLS, Light Scattering, and SFMIIMacromolecules, 1999 , 32, 2629-2637	5.5	236
99	pH-responsive molecular nanocarriers based on dendritic core-shell architectures. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 4252-6	16.4	197
98	Peptide-polymer hybrid nanotubes. Angewandte Chemie - International Edition, 2005, 44, 3297-301	16.4	193
97	Single Molecule Rod©lobule Phase Transition for Brush Molecules at a Flat Interface. Macromolecules, 2001 , 34, 8354-8360	5.5	182
96	Design and Structural Analysis of the First Spherical Monodendron Self-Organizable in a Cubic Lattice. <i>Journal of the American Chemical Society</i> , 2000 , 122, 4249-4250	16.4	121
95	Molecular Conformations of Monodendron-Jacketed Polymers by Scanning Force Microscopy. <i>Macromolecules</i> , 1999 , 32, 2653-2660	5.5	104
94	Measuring molecular weight by atomic force microscopy. <i>Journal of the American Chemical Society</i> , 2003 , 125, 6725-8	16.4	101
93	Motion of nano-objects on polymer brushes. <i>Polymer</i> , 2004 , 45, 8279-8297	3.9	94
92	Light-Controlled Reversible Manipulation of Microgel Particle Size Using Azobenzene-Containing Surfactant. <i>Advanced Functional Materials</i> , 2012 , 22, 5000-5009	15.6	82
91	Dynamically Reconfigurable Polymer Films: Impact on Nanomotion. <i>Advanced Materials</i> , 2006 , 18, 2359-	23/62	64
90	Epitaxial Adsorption of Monodendron-Jacketed Linear Polymers on Highly Oriented Pyrolytic Graphite. <i>Langmuir</i> , 2000 , 16, 6862-6867	4	64
89	Spontaneous Curvature of Comblike Polymers at a Flat Interface. <i>Macromolecules</i> , 2004 , 37, 3918-3923	5.5	62
88	In-situ atomic force microscopy study of the mechanism of surface relief grating formation in photosensitive polymer films. <i>Journal of Applied Physics</i> , 2013 , 113, 224304	2.5	61
87	Memory of surface patterns in mixed polymer brushes: simulation and experiment. <i>Langmuir</i> , 2007 , 23, 279-85	4	61
86	Manipulation of small particles at solid liquid interface: light driven diffusioosmosis. <i>Scientific Reports</i> , 2016 , 6, 36443	4.9	54
85	Can polymer brushes induce motion of nano-objects?. <i>Nanotechnology</i> , 2003 , 14, 1098-1108	3.4	53

84	Polymer Brushes with Nanometer-Scale Gradients. Advanced Materials, 2009, 21, 4706-4710	24	52
83	Local Composition of Nanophase-Separated Mixed Polymer Brushes. <i>Macromolecules</i> , 2006 , 39, 3056-3	0 6 45	51
82	Graphene multilayer as nanosized optical strain gauge for polymer surface relief gratings. <i>Nano Letters</i> , 2014 , 14, 5754-60	11.5	47
81	A comparative study of photoinduced deformation in azobenzene containing polymer films. <i>Soft Matter</i> , 2016 , 12, 2593-603	3.6	45
80	Light-Induced Chain Scission in Photosensitive Polymer Brushes. <i>Macromolecules</i> , 2011 , 44, 7372-7377	5.5	43
79	Soft matter beats hard matter: rupturing of thin metallic films induced by mass transport in photosensitive polymer films. <i>ACS Applied Materials & Distributed & Distributed & Distributed & Distributed & Distributed & Dist</i>	9.5	42
78	Structural characterization of a spin-assisted colloid-polyelectrolyte assembly: stratified multilayer thin films. <i>Langmuir</i> , 2010 , 26, 18499-502	4	42
77	Thermal Cis-to-Trans Isomerization of Azobenzene-Containing Molecules Enhanced by Gold Nanoparticles: An Experimental and Theoretical Study. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 1736	9 ³ 1 ⁸ 37	.7 ⁴¹
76	Photomechanical degrafting of azo-functionalized poly(methacrylic acid) (PMAA) brushes. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 10431-8	3.4	41
75	Opto-mechanical scission of polymer chains in photosensitive diblock-copolymer brushes. <i>Langmuir</i> , 2013 , 29, 13967-74	4	40
74	Photosensitive microgels containing azobenzene surfactants of different charges. <i>Physical Chemistry Chemical Physics</i> , 2016 , 19, 108-117	3.6	39
73	Remote control of soft nano-objects by light using azobenzene containing surfactants. <i>Journal Physics D: Applied Physics</i> , 2018 , 51, 013002	3	38
72	Photosensitive surfactants: micellization and interaction with DNA. <i>Journal of Chemical Physics</i> , 2014 , 140, 044906	3.9	38
71	Photosensitive response of azobenzene containing films towards pure intensity or polarization interference patterns. <i>Applied Physics Letters</i> , 2014 , 105, 051601	3.4	37
70	Light-Induced Reversible Change of Roughness and Thickness of Photosensitive Polymer Brushes. <i>ACS Applied Materials & District Materia</i>	9.5	35
69	DNA compaction by azobenzene-containing surfactant. <i>Physical Review E</i> , 2011 , 84, 021909	2.4	34
68	Making polymer brush photosensitive with azobenzene containing surfactants. <i>Polymer</i> , 2015 , 79, 65-7.	23.9	32
67	Reversible structuring of photosensitive polymer films by surface plasmon near field radiation. <i>Soft Matter</i> , 2011 , 7, 4174	3.6	32

66	Theory of Collapse and Overcharging of a Polyelectrolyte Microgel Induced by an Oppositely Charged Surfactant. <i>Macromolecules</i> , 2014 , 47, 5388-5399	5.5	29
65	Structuring of photosensitive material below diffraction limit using far field irradiation. <i>Applied Physics A: Materials Science and Processing</i> , 2013 , 113, 263-272	2.6	29
64	Initial salivary pellicle formation on solid substrates studied by AFM. <i>Journal of Nanoscience and Nanotechnology</i> , 2004 , 4, 532-8	1.3	27
63	Light-Tunable Plasmonic Nanoarchitectures Using Gold NanoparticleAzobenzene-Containing Cationic Surfactant Complexes. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 3762-3770	3.8	26
62	Interaction of photosensitive surfactant with DNA and poly acrylic acid. <i>Journal of Chemical Physics</i> , 2014 , 140, 044907	3.9	26
61	Domain memory of mixed polymer brushes. <i>Langmuir</i> , 2006 , 22, 4660-7	4	26
60	Polymer brushes modified by photosensitive azobenzene containing polyamines. <i>Polymer</i> , 2016 , 98, 42	1 ₃ 4328	25
59	Probing opto-mechanical stresses within azobenzene-containing photosensitive polymer films by a thin metal film placed above. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 11333-40	9.5	24
58	Surface plasmon nanolithography: impact of dynamically varying near-field boundary conditions at the airpolymer interface. <i>Journal of Materials Chemistry</i> , 2012 , 22, 5945		23
57	Light-Induced Deformation of Azobenzene-Containing Colloidal Spheres: Calculation and Measurement of Opto-Mechanical Stresses. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 2001-2009	3.4	22
56	Polarized 3D Raman and nanoscale near-field optical microscopy of optically inscribed surface relief gratings: chromophore orientation in azo-doped polymer films. <i>Soft Matter</i> , 2014 , 10, 1544-54	3.6	22
55	Kinetics of photo-isomerization of azobenzene containing surfactants. <i>Journal of Chemical Physics</i> , 2020 , 152, 024904	3.9	21
54	Light induced reversible structuring of photosensitive polymer films RSC Advances, 2019, 9, 20295-203	30,5 ₇	21
53	Effect of pH, co-monomer content, and surfactant structure on the swelling behavior of microgel-azobenzene-containing surfactant complex. <i>Polymer</i> , 2014 , 55, 6513-6518	3.9	20
52	Phase diagrams of DNA-photosensitive surfactant complexes: effect of ionic strength and surfactant structure. <i>Journal of Chemical Physics</i> , 2014 , 141, 164904	3.9	19
51	Smart polymer surfaces: mapping chemical landscapes on the nanometre scale. <i>Soft Matter</i> , 2010 , 6, 3764	3.6	18
50	Selective mass transport of azobenzene-containing photosensitive films towards or away from the light intensity. <i>Journal of the Society for Information Display</i> , 2015 , 23, 154-162	2.1	17
49	Controlled topography change of subdiffraction structures based on photosensitive polymer films induced by surface plasmon polaritons. <i>ACS Applied Materials & District State of the State</i>	9.5	17

(2013-2017)

48	Communication: Light driven remote control of microgelsSsize in the presence of photosensitive surfactant: Complete phase diagram. <i>Journal of Chemical Physics</i> , 2017 , 147, 031101	3.9	15
47	Near-Field Induced Reversible Structuring of Photosensitive Polymer Films: Gold Versus Silver Nano-antennas. <i>Plasmonics</i> , 2012 , 7, 535-542	2.4	15
46	Photocontrolled adsorption of polyelectrolyte molecules on a silicon substrate. <i>Langmuir</i> , 2013 , 29, 160) <u>5</u> 48-65	14
45	Mapping a plasmonic hologram with photosensitive polymer films: standing versus propagating waves. <i>ACS Applied Materials & Damp; Interfaces</i> , 2014 , 6, 14174-80	9.5	13
44	Photoisomers of Azobenzene Star with a Flat Core: Theoretical Insights into Multiple States from DFT and MD Perspective. <i>Journal of Physical Chemistry B</i> , 2017 , 121, 8854-8867	3.4	13
43	The design of thin polymer membranes filled with magnetic particles on a microstructured silicon surface. <i>Nanotechnology</i> , 2009 , 20, 255301	3.4	13
42	Photosensitive Peptidomimetic for Light-Controlled, Reversible DNA Compaction. <i>Biomacromolecules</i> , 2016 , 17, 1959-68	6.9	13
41	Extremely Long-Range Light-Driven Repulsion of Porous Microparticles. <i>Langmuir</i> , 2020 , 36, 6994-7004	4	12
40	Stretching and distortion of a photosensitive polymer film by surface plasmon generated near fields in the vicinity of a nanometer sized metal pin hole. <i>Nanotechnology</i> , 2012 , 23, 155301	3.4	12
39	Light driven guided and self-organized motion of mesoporous colloidal particles. <i>Soft Matter</i> , 2020 , 16, 1148-1155	3.6	11
38	Visualization of surface plasmon interference by imprinting intensity patterns on a photosensitive polymer. <i>Nanotechnology</i> , 2012 , 23, 485304	3.4	10
37	Light-driven motion of self-propelled porous Janus particles. <i>Applied Physics Letters</i> , 2019 , 115, 263701	3.4	10
36	Photoswitching of azobenzene-containing self-assembled monolayers as a tool for control over silicon surface electronic properties. <i>Journal of Chemical Physics</i> , 2017 , 146, 104703	3.9	9
35	Light driven diffusioosmotic repulsion and attraction of colloidal particles. <i>Journal of Chemical Physics</i> , 2020 , 152, 194703	3.9	8
34	Confocal Raman Microscopy and AFM Study of the Interface Between the Photosensitive Polymer Layer and Multilayer Graphene. <i>Soft Materials</i> , 2014 , 12, S98-S105	1.7	8
33	Surface pressure-induced isothermal 2D- to 3D-transitions in Langmuir films of poly(Eaprolactone)s and oligo(Eaprolactone) based polyesterurethanes. <i>Polymers for Advanced Technologies</i> , 2015 , 26, 1411-1420	3.2	8
32	Motion of Adsorbed Nano-Particles on Azobenzene Containing Polymer Films. <i>Molecules</i> , 2016 , 21,	4.8	8
31	Atomic force microscopy nanolithography: fabrication of metallic nano-slits using silicon nitride tips. <i>Journal of Materials Science</i> , 2013 , 48, 3863-3869	4.3	7

30	Light-Induced Structuring of Photosensitive Polymer Brushes. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 3017-3026	4.3	6
29	DNA Interaction with Head-to-Tail Associates of Cationic Surfactants Prevents Formation of Compact Particles. <i>Molecules</i> , 2018 , 23,	4.8	6
28	Effect of a Nanodimensional Polyethylenimine Layer on Current Voltage Characteristics of Hybrid Structures Based on Single-Crystal Silicon. <i>Journal of Electronic Materials</i> , 2012 , 41, 3427-3435	1.9	6
27	Local chemical composition of nanophase-separated polymer brushes. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 11620-6	3.6	6
26	Impact of temperature on the LB patterning of DPPC on mica. <i>Langmuir</i> , 2011 , 27, 12354-60	4	6
25	Molecular weight determination of an azobenzene-derivatized poly(amic acid) by AFM. <i>Journal of Materials Chemistry</i> , 2005 , 15, 4069		6
24	Photo-assisted adsorption of gold nanoparticles onto a silicon substrate. <i>Applied Physics Letters</i> , 2017 , 110, 133104	3.4	5
23	Self-Assembly of Molecular Brushes with Polyimide Backbone and Amphiphilic Block Copolymer Side Chains in Selective Solvents. <i>Polymers</i> , 2020 , 12,	4.5	5
22	Fabrication of Flexible Hydrogel Sheets Featuring Periodically Spaced Circular Holes with Continuously Adjustable Size in Real Time. <i>ACS Applied Materials & Discounty Adjustable Size</i> in Real Time. <i>ACS Applied Materials & Discounty Adjustable Size</i> in Real Time. <i>ACS Applied Materials & Discounty States Sta</i>	59·5	5
21	Solving an old puzzle: fine structure of diffraction spots from an azo-polymer surface relief grating. <i>Applied Physics B: Lasers and Optics</i> , 2019 , 125, 1	1.9	5
20	The effect of illumination on the parameters of the polymer layer deposited from solution onto a semiconductor substrate. <i>Technical Physics Letters</i> , 2013 , 39, 656-659	0.7	5
19	Adsorption of Photoresponsive Surfactants at Solid-Liquid Interfaces. <i>Langmuir</i> , 2020 , 36, 14009-14018	4	5
18	Surface tension and dilation rheology of DNA solutions in mixtures with azobenzene-containing cationic surfactant. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2016 , 505, 186-192	5.1	5
17	Mass production of polymer nano-wires filled with metal nano-particles. <i>Scientific Reports</i> , 2017 , 7, 8506	54.9	4
16	Conductivity behavior of very thin gold films ruptured by mass transport in photosensitive polymer film. <i>Applied Physics Letters</i> , 2013 , 103, 253101	3.4	4
15	Formation of half-period surface relief gratings in azobenzene containing polymer films. <i>Applied Physics B: Lasers and Optics</i> , 2020 , 126, 1	1.9	4
14	Photo-isomerization of azobenzene containing surfactants induced by near-infrared light using upconversion nanoparticles as mediator. <i>Journal of Physics Condensed Matter</i> , 2019 , 31, 125201	1.8	4
13	Quantification of ordering in active light driven colloids. <i>Journal of Colloid and Interface Science</i> , 2021 , 586, 866-875	9.3	4

LIST OF PUBLICATIONS

12	Tuning the Volume Phase Transition Temperature of Microgels by Light. <i>Advanced Functional Materials</i> ,2107946	15.6	4	
1:	Polarization controlled fine structure of diffraction spots from an optically induced grating. <i>Applied Physics Letters</i> , 2020 , 116, 051601	3.4	3	
10	Light-induced manipulation of passive and active microparticles. <i>European Physical Journal E</i> , 2021 , 44, 50	1.5	3	
9	On the formation of molecular terraces. <i>Langmuir</i> , 2005 , 21, 8250-4	4	2	
8	Photo-Isomerization Kinetics of Azobenzene Containing Surfactant Conjugated with Polyelectrolyte. <i>Molecules</i> , 2020 , 26,	4.8	2	
7	Photoisomerization of an Azobenzene-Containing Surfactant Within a Micelle. <i>ChemPhotoChem</i> , 2021 , 5, 926	3.3	2	
6	Local Direction of Optomechanical Stress in Azobenzene Containing Polymers During Surface Relief Grating Formation. <i>Macromolecular Materials and Engineering</i> ,2100990	3.9	2	
5	Stimuli-Responsive Materials: Light-Controlled Reversible Manipulation of Microgel Particle Size Using Azobenzene-Containing Surfactant (Adv. Funct. Mater. 23/2012). <i>Advanced Functional Materials</i> , 2012 , 22, 5064-5064	15.6	1	
4	Some Features of Surfactant Organization in DNA Solutions at Various NaCl Concentrations. <i>ACS Omega</i> , 2020 , 5, 18234-18243	3.9	1	
3	How to Make a Surface Act as a Micropump. <i>Advanced Materials Interfaces</i> ,2102395	4.6	1	
2	Cis-Isomers of Photosensitive Cationic Azobenzene Surfactants in DNA Solutions at Different NaCl Concentrations: Experiment and Modeling. <i>Journal of Physical Chemistry B</i> , 2021 , 125, 11197-11207	3.4	0	
1	Tuning the Volume Phase Transition Temperature of Microgels by Light (Adv. Funct. Mater. 2/2022). Advanced Functional Materials, 2022 , 32, 2270013	15.6		