SÃ, ren Nors Nielsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/480877/publications.pdf

Version: 2024-02-01

52 papers 4,427 citations

279701 23 h-index 197736 49 g-index

54 all docs

54 docs citations

54 times ranked

4377 citing authors

#	Article	IF	CITATIONS
1	Humboldt's enigma viewed through the lens of ecosystem theory. Explanation by simple principles Environmental and Sustainability Indicators, 2022, 13, 100165.	1.7	O
2	Global warming potential and absolute global temperature change potential from carbon dioxide and methane fluxes as indicators of regional sustainability – A case study of JĀĦtland, Sweden. Ecological Indicators, 2020, 110, 105831.	2.6	45
3	Thermodynamics in Ecology—An Introductory Review. Entropy, 2020, 22, 820.	1.1	38
4	Reductions in ecology and thermodynamics. On the problems arising when shifting the concept of exergy to other hierarchical levels and domains. Ecological Indicators, 2019, 100, 118-134.	2.6	6
5	Energy flows and efficiencies as indicators of regional sustainability – A case study of JĀĦtland, Sweden. Ecological Indicators, 2019, 100, 74-98.	2.6	7
6	Second order cybernetics and semiotics in ecological systems—Where complexity really begins. Ecological Modelling, 2016, 319, 119-129.	1.2	15
7	Assessment of sustainability by models and analyses. Annals of GIS, 2016, 22, 15-28.	1.4	O
8	Recent progress in systems ecology. Ecological Modelling, 2016, 319, 112-118.	1.2	31
9	A carbon cycling model developed for the renewable Energy Danish Island, SamsÃ, Ecological Modelling, 2015, 306, 106-120.	1.2	18
10	Hierarchical networks. Ecological Modelling, 2015, 295, 59-65.	1.2	10
11	Sustainability analysis of a society based on exergy studies – a case study of the island of Samsø (Denmark). Journal of Cleaner Production, 2015, 96, 12-29.	4.6	60
12	Use of eco-exergy in ecological networks. Ecological Modelling, 2014, 293, 202-209.	1.2	13
13	A model for the contribution of macrophyte-derived organic carbon in harvested tidal freshwater marshes to surrounding estuarine and oceanic ecosystems and its response to global warming. Ecological Modelling, 2014, 294, 105-116.	1.2	5
14	The properties of the ecological hierarchy and their application as ecological indicators. Ecological Indicators, 2013, 28, 48-53.	2.6	24
15	A model of vegetation dynamics of Spartina alterniflora and Phragmites australis in an expanding estuarine wetland: Biological interactions and sedimentary effects. Ecological Modelling, 2013, 250, 195-204.	1.2	12
16	Ontic Openness as Key Factor in the Evolution of Biological Systems. , 2013, , 21-36.		2
17	Tool boxes for an integrated ecological and environmental management. Ecological Indicators, 2012, 21, 104-109.	2.6	23
18	Effect of Stubble Heights and Treatment Duration Time on the Performance of Water Dropwort Floating Treatment Wetlands (FTWS). Ecological Chemistry and Engineering S, 2012, 19, 315-330.	0.3	16

#	Article	IF	CITATIONS
19	Ontic openness: An absolute necessity for all developmental processes. Ecological Modelling, 2011, 222, 2908-2912.	1.2	16
20	The free energy and information embodied in the amino acid chains of organisms. Ecological Modelling, 2010, 221, 2388-2392.	1.2	42
21	Understanding the functional principles of natureâ€"Proposing another type of ecosystem services. Ecological Modelling, 2009, 220, 1913-1925.	1.2	24
22	A system-dynamic model on the competitive growth between Potamogeton malaianus Miq. and Spirogyra sp Ecological Modelling, 2009, 220, 2206-2217.	1.2	17
23	Towards an ecosystem semiotics. Ecological Complexity, 2007, 4, 93-101.	1.4	22
24	What has modern ecosystem theory to offer to cleaner production, industrial ecology and society? The views of an ecologist. Journal of Cleaner Production, 2007, 15, 1639-1653.	4.6	50
25	Application of exergy as thermodynamic indicator in ecology. Energy, 2007, 32, 673-685.	4.5	90
26	A common framework for emergy and exergy based LCA in accordance with environ theory. International Journal of Ecodynamics, 2007, 2, 170-185.	0.4	8
27	Use of thermodynamic functions for expressing some relevant aspects of sustainability. International Journal of Energy Research, 2005, 29, 53-64.	2.2	43
28	Impact of eutrophication and river management within a framework of ecosystem theories. Ecological Modelling, 2003, 166, 147-168.	1.2	150
29	Structural changes in an estuary, described by models and using exergy as orientor. Ecological Modelling, 2002, 158, 233-240.	1.2	26
30	Modeling mosquitofish (Gambusia holbrooki) responses to Genapol OXD-080, a non-ionic surfactant, in rice fields. Ecological Engineering, 2001, 16, 537-544.	1.6	12
31	On the consistency between thermodynamical and network approaches to ecosystems. Ecological Modelling, 2000, 132, 23-31.	1.2	42
32	Thermodynamics of an ecosystem interpreted as a hierarchy of embedded systems. Ecological Modelling, 2000, 135, 279-289.	1.2	21
33	CRISP (crayfish and rice integrated system of production): 2. Modelling crayfish (Procambarus clarkii) population dynamics. Ecological Modelling, 1999, 123, 5-16.	1.2	33
34	CRISP (crayfish and rice integrated system of production): 4. Modelling water, algae and oxygen dynamics. Ecological Modelling, 1999, 123, 29-40.	1.2	12
35	CRISP-crayfish rice integrated system of production. 5. Simulation of nitrogen dynamics. Ecological Modelling, 1999, 123, 41-52.	1.2	12
36	Ecosystem as self-organizing critical systems. Ecological Modelling, 1998, 111, 261-268.	1.2	54

#	Article	IF	Citations
37	Occurrence, fate and effects of pharmaceutical substances in the environment- A review. Chemosphere, 1998, 36, 357-393.	4.2	2,669
38	The Evolution of the Thermodynamic Equilibrium in the Expanding Universe. Physica Scripta, 1998, 58, 543-544.	1.2	6
39	Description of the three shallow estuaries: Mondego River (Portugal), Roskilde Fjord (Denmark) and the Lagoon of Venice (Italy). Ecological Modelling, 1997, 102, 17-31.	1.2	113
40	Modelling the effects of green macroalgae blooms on the population dynamics of Cyathura carinata (Crustacea: Isopoda) in an eutrophied estuary. Ecological Modelling, 1997, 102, 33-53.	1.2	15
41	Analysis of the properties of exergy and biodiversity along an estuarine gradient of eutrophication. Ecological Modelling, 1997, 102, 155-167.	1.2	165
42	Examination and optimization of different exergy forms in macrophyte societies. Ecological Modelling, 1997, 102, 115-127.	1.2	16
43	A model of nitrogen removal from waste water in a fixed bed reactor using simultaneous nitrification and denitrification (SND). Ecological Modelling, 1996, 87, 131-141.	1.2	6
44	Application of ecological engineering principles in agriculture. Ecological Engineering, 1996, 7, 373-381.	1.6	21
45	Integrated production of crayfish and rice: a management model. Ecological Engineering, 1995, 4, 199-210.	1.6	29
46	Emergy, environ, exergy and ecological modelling. Ecological Modelling, 1995, 77, 99-109.	1.2	216
47	Optimization of exergy in a structural dynamic model. Ecological Modelling, 1995, 77, 111-122.	1.2	35
48	Modelling structural dynamical changes in a Danish shallow lake. Ecological Modelling, 1994, 73, 13-30.	1.2	39
49	Models of the structural dynamics in lakes and reservoirs. Ecological Modelling, 1994, 74, 39-46.	1.2	27
50	Strategies for structural-dynamic modelling. Ecological Modelling, 1992, 63, 91-101.	1.2	48
51	Flourishing Within Limits to Growth. , 0, , .		14
52	Sustainability Analysis: Work Energy (Exergy) as Indicator. , 0, , 1-18.		0