Jiangyuan Zeng List of Publications by Year in descending order Source: https://exaly.com/author-pdf/4808372/publications.pdf Version: 2024-02-01 430843 289230 1,627 59 18 40 citations h-index g-index papers 61 61 61 1467 docs citations times ranked citing authors all docs | # | Article | IF | CITATIONS | |----|---|------|-----------| | 1 | Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations. Remote Sensing of Environment, 2015, 163, 91-110. | 11.0 | 287 | | 2 | Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive assessment using global ground-based observations. Remote Sensing of Environment, 2019, 231, 111215. | 11.0 | 186 | | 3 | Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2658-2678. | 3.3 | 183 | | 4 | Soil Moisture Mapping from Satellites: An Intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over Two Dense Network Regions at Different Spatial Scales. Remote Sensing, 2018, 10, 33. | 4.0 | 111 | | 5 | A Preliminary Evaluation of the SMAP Radiometer Soil Moisture Product Over United States and Europe Using Ground-Based Measurements. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 4929-4940. | 6.3 | 90 | | 6 | First Assessment of Sentinel-1A Data for Surface Soil Moisture Estimations Using a Coupled Water Cloud Model and Advanced Integral Equation Model over the Tibetan Plateau. Remote Sensing, 2017, 9, 714. | 4.0 | 77 | | 7 | A first assessment of satellite and reanalysis estimates of surface and root-zone soil moisture over the permafrost region of Qinghai-Tibet Plateau. Remote Sensing of Environment, 2021, 265, 112666. | 11.0 | 64 | | 8 | Method for Soil Moisture and Surface Temperature Estimation in the Tibetan Plateau Using Spaceborne Radiometer Observations. IEEE Geoscience and Remote Sensing Letters, 2015, 12, 97-101. | 3.1 | 52 | | 9 | Soil Moisture Retrieval From SMAP: A Validation and Error Analysis Study Using Ground-Based Observations Over the Little Washita Watershed. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 1394-1408. | 6.3 | 52 | | 10 | A fine-resolution soil moisture dataset for China in 2002–2018. Earth System Science Data, 2021, 13, 3239-3261. | 9.9 | 48 | | 11 | A Comprehensive Analysis of Rough Soil Surface Scattering and Emission Predicted by AIEM With Comparison to Numerical Simulations and Experimental Measurements. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 1696-1708. | 6.3 | 44 | | 12 | Evaluation of six satellite- and model-based surface soil temperature datasets using global ground-based observations. Remote Sensing of Environment, 2021, 264, 112605. | 11.0 | 38 | | 13 | Using an unmanned aerial vehicle for topography mapping of the fault zone based on structure from motion photogrammetry. International Journal of Remote Sensing, 2017, 38, 2495-2510. | 2.9 | 37 | | 14 | Constraining the Distribution of Vertical Slip on the South Heli Shan Fault (Northeastern Tibet) From Highâ∈Resolution Topographic Data. Journal of Geophysical Research: Solid Earth, 2018, 123, 2484-2501. | 3.4 | 31 | | 15 | A Physically Based Soil Moisture Index From Passive Microwave Brightness Temperatures for Soil Moisture Variation Monitoring. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 2782-2795. | 6.3 | 30 | | 16 | Soil Moisture Retrieval from the Chinese GF-3 Satellite and Optical Data over Agricultural Fields. Sensors, 2018, 18, 2675. | 3.8 | 25 | | 17 | Parameter Optimization of a Discrete Scattering Model by Integration of Global Sensitivity Analysis Using SMAP Active and Passive Observations. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 1084-1099. | 6.3 | 22 | | 18 | The measurement and model construction of complex permittivity of vegetation. Science China Earth Sciences, 2014, 57, 729-740. | 5.2 | 19 | | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 19 | Radar Response of Off-Specular Bistatic Scattering to Soil Moisture and Surface Roughness at L-Band. IEEE Geoscience and Remote Sensing Letters, 2016, 13, 1945-1949. | 3.1 | 19 | | 20 | Assessment and Error Analysis of Satellite Soil Moisture Products Over the Third Pole. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-18. | 6.3 | 17 | | 21 | A simplified physically-based algorithm for surface soil moisture retrieval using AMSR-E data. Frontiers of Earth Science, 2014, 8, 427-438. | 2.1 | 16 | | 22 | Surface Slip Distribution Along the West Helanshan Fault, Northern China, and Its Implications for Fault Behavior. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019983. | 3.4 | 16 | | 23 | A method for monitoring hydrological conditions beneath herbaceous wetlands using multi-temporal ALOS PALSAR coherence data. Remote Sensing Letters, 2015, 6, 618-627. | 1.4 | 15 | | 24 | A Preliminary Evaluation of the GaoFen-3 SAR Radiation Characteristics in Land Surface and Compared With Radarsat-2 and Sentinel-1A. IEEE Geoscience and Remote Sensing Letters, 2018, 15, 1040-1044. | 3.1 | 13 | | 25 | The Frequency Selective Effect of Radar Backscattering from Multiscale Sea Surface. Remote Sensing, 2019, 11, 160. | 4.0 | 13 | | 26 | On Angular Features of Radar Bistatic Scattering From Rough Surface. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 3223-3235. | 6.3 | 11 | | 27 | Theoretical Study of Global Sensitivity Analysis of L-Band Radar Bistatic Scattering for Soil Moisture
Retrieval. IEEE Geoscience and Remote Sensing Letters, 2018, 15, 1710-1714. | 3.1 | 11 | | 28 | Generating high-accuracy and cloud-free surface soil moisture at 1 km resolution by point-surface data fusion over the Southwestern U.S Agricultural and Forest Meteorology, 2022, 321, 108985. | 4.8 | 11 | | 29 | An Assessment and Error Analysis of MOD10A1 Snow Product Using Landsat and Ground Observations
Over China During 2000–2016. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 2020, 13, 1467-1478. | 4.9 | 10 | | 30 | Evaluation of Gaofen-3 C-Band SAR for Soil Moisture Retrieval Using Different Polarimetric Decomposition Models. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 5707-5719. | 4.9 | 9 | | 31 | Spatial and Temporal Variations of Arctic Sea Ice From 2002 to 2017. Earth and Space Science, 2020, 7, e2020EA001278. | 2.6 | 8 | | 32 | Evaluation of effective spectral features for glacial lake mapping by using Landsat-8 OLI imagery. Journal of Mountain Science, 2020, 17, 2707-2723. | 2.0 | 8 | | 33 | Full-Wave Simulation and Analysis of Bistatic Scattering and Polarimetric Emissions From Double-Layered Sastrugi Surfaces. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 292-307. | 6.3 | 7 | | 34 | Depolarized Scattering of Rough Surface With Dielectric Inhomogeneity and Spatial Anisotropy. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 47-59. | 6.3 | 7 | | 35 | On the Relationship Between Radar Backscatter and Radiometer Brightness Temperature From SMAP. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-16. | 6.3 | 7 | | 36 | Uncertainty Characterization of Groundâ€Based, Satellite, and Reanalysis Snow Depth Products Using Extended Triple Collocation. Water Resources Research, 2022, 58, . | 4.2 | 6 | | # | Article | IF | CITATIONS | |----|---|-----|-----------| | 37 | Study on the relationship between soil moisture and its dielectric constant obtained by space-borne microwave radiometers and scatterometers. IOP Conference Series: Earth and Environmental Science, 2014, 17, 012143. | 0.3 | 5 | | 38 | Global Sensitivity Analysis of the MEMLS Model for Retrieving Snow Water Equivalent. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-15. | 6.3 | 4 | | 39 | Comparison of Different Intercalibration Methods of Brightness Temperatures From FY-3D and AMSR2. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-17. | 6.3 | 4 | | 40 | The simplified model of soil dielectric constant and soil moisture at the main frequency points of microwave band. , $2013, , .$ | | 3 | | 41 | Covariation of SMAP active and passive measurements with respect to vegetation and surface roughness. , 2017, , . | | 2 | | 42 | The 20-y spatio-temporal trends of remotely sensed soil moisture and vegetation and their response to climate change over the Third Pole. Journal of Hydrometeorology, 2021, , . | 1.9 | 2 | | 43 | Land surface temperature estimates in the Tibetan Plateau from passive microwave observations. , 2014, , . | | 1 | | 44 | Response of bistatic scattering to soil moisture and surface roughness at L-band., 2016,,. | | 1 | | 45 | Parameter sensitivity analysis for bistatic scattering of rough surface. , 2016, , . | | 1 | | 46 | Multiscale Comparison of Eight Satellite Soil Moisture Data Sets Over Two Calibration Sites., 2018,,. | | 1 | | 47 | Comparison of Remotely Sensed Sea Ice Concentrations with Reanalysis Dataset in Polar Regions. , 2019, , . | | 1 | | 48 | Consistent Comparison of Remotely Sensed Sea Ice Concentration Products with ERA-Interim Reanalysis Data in Polar Regions. Remote Sensing, 2020, 12, 2880. | 4.0 | 1 | | 49 | A physically-based algorithm for surface soil moisture retrieval in the Tibet Plateau using passive microwave remote sensing. , 2013, , . | | 0 | | 50 | Assessment of the newest ECV soil moisture product over the Tibetan plateau using ground-based observations., 2015,,. | | 0 | | 51 | A simulation study of the sensitivity of bistatic scattering to soil moisture and surface roughness at L-band. , 2016, , . | | 0 | | 52 | Validation of SMAP Soil Moisture analysis product using in-situ measurements over the Little Washita Watershed. , $2016, , .$ | | 0 | | 53 | A new algorithm for soil moisture retrieval using C and K-band Radiometer channels of ocean salinity satellite. , $2016, , .$ | | 0 | | 54 | A preliminary assessment of the SMAP radiometer soil moisture product using three in-situ networks. , 2016, , . | | 0 | | # | Article | lF | CITATIONS | |----|--|-----|-----------| | 55 | Assessment of Four Model-Based Surface Soil Temperature Products Unsing Global Dense in Situ Observations. , 2021, , . | | O | | 56 | Radar Bistatic Configuration for Soil Moisture Estimation at L-Band Using Global Sensitivity Analysis Method. , $2018, \ldots$ | | 0 | | 57 | DEVELOPMENT AND VALIDATION OF A NEW PASSIVE MICROWAVE BASED SOIL MOISTURE INDEX. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, V-3-2020, 125-131. | 0.0 | 0 | | 58 | RECONSTRUCTION OF THE SLIP DISTRIBUTION ALONG THE WEST HELANSHAN FAULT, NORTHERN CHINA BASED ON HIGH-RESOLUTION TOPOGRAPHY. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLIII-B2-2020, 1025-1031. | 0.2 | 0 | | 59 | Spatio-temporal analysis of the melt onset dates over Arctic sea ice from 1979 to 2017. Acta
Oceanologica Sinica, 2022, 41, 146-156. | 1.0 | 0 |