Harmit Malik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/480814/publications.pdf Version: 2024-02-01

		19608	15683
157	18,284	61	125
papers	citations	h-index	g-index
192	192	192	22498
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583, 459-468.	13.7	3,542
2	The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA. Science, 2001, 293, 1098-1102.	6.0	1,138
3	Positive selection of primate TRIM5Â identifies a critical species-specific retroviral restriction domain. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2832-2837.	3.3	634
4	The age and evolution of non-LTR retrotransposable elements. Molecular Biology and Evolution, 1999, 16, 793-805.	3.5	518
5	Phylogenomics of the nucleosome. Nature Structural and Molecular Biology, 2003, 10, 882-891.	3.6	497
6	Rules of Engagement: Molecular Insights from Host-Virus Arms Races. Annual Review of Genetics, 2012, 46, 677-700.	3.2	462
7	Ancient Adaptive Evolution of the Primate Antiviral DNA-Editing Enzyme APOBEC3G. PLoS Biology, 2004, 2, e275.	2.6	426
8	Major Evolutionary Transitions in Centromere Complexity. Cell, 2009, 138, 1067-1082.	13.5	324
9	Poised for Contagion: Evolutionary Origins of the Infectious Abilities of Invertebrate Retroviruses. Genome Research, 2000, 10, 1307-1318.	2.4	303
10	Poxviruses Deploy Genomic Accordions to Adapt Rapidly against Host Antiviral Defenses. Cell, 2012, 150, 831-841.	13.5	281
11	Adaptive Evolution of Cid, a Centromere-Specific Histone in Drosophila. Genetics, 2001, 157, 1293-1298.	1.2	274
12	A unified phylogeny-based nomenclature for histone variants. Epigenetics and Chromatin, 2012, 5, 7.	1.8	265
13	Accelerated Evolution of the Prdm9 Speciation Gene across Diverse Metazoan Taxa. PLoS Genetics, 2009, 5, e1000753.	1.5	256
14	Safeguarding gene drive experiments in the laboratory. Science, 2015, 349, 927-929.	6.0	254
15	Protein kinase R reveals an evolutionary model for defeating viral mimicry. Nature, 2009, 457, 485-489.	13.7	250
16	The Ability of Primate Lentiviruses to Degrade the Monocyte Restriction Factor SAMHD1 Preceded the Birth of the Viral Accessory Protein Vpx. Cell Host and Microbe, 2012, 11, 194-204.	5.1	245
17	Guidelines for Naming Nonprimate APOBEC3 Genes and Proteins. Journal of Virology, 2009, 83, 494-497.	1.5	217
18	Phylogenetic Analysis of Ribonuclease H Domains Suggests a Late, Chimeric Origin of LTR Retrotransposable Elements and Retroviruses. Genome Research, 2001, 11, 1187-1197.	2.4	210

#	Article	IF	CITATIONS
19	Extensive evolutionary and functional diversity among mammalian AIM2-like receptors. Journal of Experimental Medicine, 2012, 209, 1969-1983.	4.2	200
20	Modular Evolution of the Integrase Domain in the Ty3/Gypsy Class of LTR Retrotransposons. Journal of Virology, 1999, 73, 5186-5190.	1.5	196
21	Antiretroelement Activity of APOBEC3H Was Lost Twice in Recent Human Evolution. Cell Host and Microbe, 2008, 4, 249-259.	5.1	187
22	Identification of the yeast gene encoding the tRNA m1G methyltransferase responsible for modification at position 9. Rna, 2003, 9, 574-585.	1.6	186
23	The evolutionary conundrum of pathogen mimicry. Nature Reviews Microbiology, 2009, 7, 787-797.	13.6	183
24	Conflict begets complexity: the evolution of centromeres. Current Opinion in Genetics and Development, 2002, 12, 711-718.	1.5	178
25	Adaptive Evolution and Antiviral Activity of the Conserved Mammalian Cytidine Deaminase APOBEC3H. Journal of Virology, 2006, 80, 3853-3862.	1.5	177
26	Molecular Basis for Specific Recognition of Bacterial Ligands by NAIP/NLRC4 Inflammasomes. Molecular Cell, 2014, 54, 17-29.	4.5	176
27	Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. ELife, 2014, 3, .	2.8	174
28	Positive Selection and Increased Antiviral Activity Associated with the PARP-Containing Isoform of Human Zinc-Finger Antiviral Protein. PLoS Genetics, 2008, 4, e21.	1.5	171
29	Discordant Evolution of the Adjacent Antiretroviral Genes TRIM22 and TRIM5 in Mammals. PLoS Pathogens, 2007, 3, e197.	2.1	165
30	Rapid Evolution of PARP Genes Suggests a Broad Role for ADP-Ribosylation in Host-Virus Conflicts. PLoS Genetics, 2014, 10, e1004403.	1.5	163
31	Altered Heterochromatin Binding by a Hybrid Sterility Protein in <i>Drosophila</i> Sibling Species. Science, 2009, 326, 1538-1541.	6.0	154
32	Identification of the endonuclease domain encoded by R2 and other site-specific, non-long terminal repeat retrotransposable elements. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 7847-7852.	3.3	149
33	Evolution-Guided Identification of Antiviral Specificity Determinants in the Broadly Acting Interferon-Induced Innate Immunity Factor MxA. Cell Host and Microbe, 2012, 12, 598-604.	5.1	144
34	Paleovirology—Modern Consequences of Ancient Viruses. PLoS Biology, 2010, 8, e1000301.	2.6	143
35	The apolipoprotein L family of programmed cell death and immunity genes rapidly evolved in primates at discrete sites of host–pathogen interactions. Genome Research, 2009, 19, 850-858.	2.4	135
36	Ancient Adaptive Evolution of Tetherin Shaped the Functions of Vpu and Nef in Human Immunodeficiency Virus and Primate Lentiviruses. Journal of Virology, 2010, 84, 7124-7134.	1.5	135

#	Article	IF	CITATIONS
37	Identification of an overprinting gene in Merkel cell polyomavirus provides evolutionary insight into the birth of viral genes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12744-12749.	3.3	132
38	Genetic conflicts: the usual suspects and beyond. Journal of Experimental Biology, 2017, 220, 6-17.	0.8	132
39	Multiple Roles for Heterochromatin Protein 1 Genes in <i>Drosophila</i> . Annual Review of Genetics, 2009, 43, 467-492.	3.2	127
40	Positive Selection Drives the Evolution of rhino, a Member of the Heterochromatin Protein 1 Family in Drosophila. PLoS Genetics, 2005, 1, e9.	1.5	125
41	Restriction of an Extinct Retrovirus by the Human TRIM5Â Antiviral Protein. Science, 2007, 316, 1756-1758.	6.0	125
42	Centromeres: Selfish drivers. Nature, 2002, 417, 227-227.	13.7	119
43	Evolutionary specialization of the nuclear targeting apparatus. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 13738-13742.	3.3	112
44	The RTE class of non-LTR retrotransposons is widely distributed in animals and is the origin of many SINEs. Molecular Biology and Evolution, 1998, 15, 1123-1134.	3.5	112
45	Recurrent evolution of DNA-binding motifs in the Drosophila centromeric histone. Proceedings of the United States of America, 2002, 99, 1449-1454.	3.3	112
46	Evolutionary cell biology: Two origins, one objective. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16990-16994.	3.3	108
47	Paleovirology—ghosts and gifts of viruses past. Current Opinion in Virology, 2011, 1, 304-309.	2.6	107
48	wtf genes are prolific dual poison-antidote meiotic drivers. ELife, 2017, 6, .	2.8	106
49	The domain structure and retrotransposition mechanism of R2 elements are conserved throughout arthropods. Molecular Biology and Evolution, 1999, 16, 502-511.	3.5	104
50	High-Frequency Persistence of an Impaired Allele of the Retroviral Defense Gene TRIM5α in Humans. Current Biology, 2006, 16, 95-100.	1.8	103
51	Genome rearrangements and pervasive meiotic drive cause hybrid infertility in fission yeast. ELife, 2014, 3, e02630.	2.8	99
52	Are retrotransposons long-term hitchhikers?. Nature, 1998, 392, 141-142.	13.7	97
53	Stepwise Evolution of Essential Centromere Function in a <i>Drosophila</i> Neogene. Science, 2013, 340, 1211-1214.	6.0	94
54	Convergent Evolution of Escape from Hepaciviral Antagonism in Primates. PLoS Biology, 2012, 10, e1001282.	2.6	90

#	Article	IF	CITATIONS
55	The Centromere-Drive Hypothesis: A Simple Basis for Centromere Complexity. Progress in Molecular and Subcellular Biology, 2009, 48, 33-52.	0.9	85
56	Evolutionary Turnover of Kinetochore Proteins: A Ship of Theseus?. Trends in Cell Biology, 2016, 26, 498-510.	3.6	84
57	Evolution-guided functional analyses reveal diverse antiviral specificities encoded by IFIT1 genes in mammals. ELife, 2016, 5, .	2.8	84
58	Transferred interbacterial antagonism genes augment eukaryotic innate immune function. Nature, 2015, 518, 98-101.	13.7	82
59	The cellular mechanisms and consequences of centromere drive. Current Opinion in Cell Biology, 2018, 52, 58-65.	2.6	74
60	A mitochondrial DNA hypomorph of cytochrome oxidase specifically impairs male fertility in Drosophila melanogaster. ELife, 2016, 5, .	2.8	74
61	An evolutionary perspective on the broad antiviral specificity of MxA. Current Opinion in Microbiology, 2013, 16, 493-499.	2.3	71
62	Hide and seek: how chromatin-based pathways silence retroelements in the mammalian germline. Current Opinion in Genetics and Development, 2016, 37, 51-58.	1.5	69
63	An expanded clade of rodent Trim5 genes. Virology, 2009, 385, 473-483.	1.1	68
64	Host gene evolution traces the evolutionary history of ancient primate lentiviruses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120496.	1.8	68
65	NeSL-1, an Ancient Lineage of Site-Specific Non-LTR Retrotransposons From Caenorhabditis elegans. Genetics, 2000, 154, 193-203.	1.2	64
66	Positive Selection of Iris, a Retroviral Envelope–Derived Host Gene in Drosophila melanogaster. PLoS Genetics, 2005, 1, e44.	1.5	62
67	Putative telomerase catalytic subunits from Giardia lamblia and Caenorhabditis elegans. Gene, 2000, 251, 101-108.	1.0	61
68	A functional homolog of a yeast tRNA splicing enzyme is conserved in higher eukaryotes and in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 14136-14141.	3.3	60
69	An essential cell cycle regulation gene causes hybrid inviability in <i>Drosophila</i> . Science, 2015, 350, 1552-1555.	6.0	59
70	Ancient Lineages of Non-LTR Retrotransposons in the Primitive Eukaryote, Giardia lamblia. Molecular Biology and Evolution, 2002, 19, 619-630.	3.5	57
71	Functional metagenomics-guided discovery of potent Cas9 inhibitors in the human microbiome. ELife, 2019, 8, .	2.8	56
72	The CNA1 Histone of the Ciliate Tetrahymena thermophila Is Essential for Chromosome Segregation in the Germline Micronucleus. Molecular Biology of the Cell, 2006, 17, 485-497.	0.9	53

#	Article	IF	CITATIONS
73	Dual recognition–incision enzymes might be involved in mismatch repair and meiosis. Trends in Biochemical Sciences, 2000, 25, 414-418.	3.7	52
74	Positive selection of yeast nonhomologous end-joining genes and a retrotransposon conflict hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17614-17619.	3.3	52
75	The Breadth of Antiviral Activity of Apobec3DE in Chimpanzees Has Been Driven by Positive Selection. Journal of Virology, 2011, 85, 11361-11371.	1.5	52
76	Species-specific positive selection of the male-specific lethal complex that participates in dosage compensation in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15412-15417.	3.3	50
77	Retrocopying expands the functional repertoire of APOBEC3 antiviral proteins in primates. ELife, 2020, 9, .	2.8	50
78	Structural analysis of RIG-I-like receptors reveals ancient rules of engagement between diverse RNA helicases and TRIM ubiquitin ligases. Molecular Cell, 2021, 81, 599-613.e8.	4.5	48
79	Evolutionary Analyses Suggest a Function of MxB Immunity Proteins Beyond Lentivirus Restriction. PLoS Pathogens, 2015, 11, e1005304.	2.1	48
80	Phylogenomic Analysis Reveals Dynamic Evolutionary History of the Drosophila Heterochromatin Protein 1 (HP1) Gene Family. PLoS Genetics, 2012, 8, e1002729.	1.5	46
81	Evolutionary origins and diversification of testis-specific short histone H2A variants in mammals. Genome Research, 2018, 28, 460-473.	2.4	46
82	An Evolutionary Screen Highlights Canonical and Noncanonical Candidate Antiviral Genes within the Primate TRIM Gene Family. Genome Biology and Evolution, 2013, 5, 2141-2154.	1.1	45
83	Genetic conflicts during meiosis and the evolutionary origins of centromere complexity. Biochemical Society Transactions, 2006, 34, 569-573.	1.6	44
84	Birth, decay, and reconstruction of an ancient <i>TRIMCyp</i> gene fusion in primate genomes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E583-92.	3.3	44
85	The piggyBac transposon-derived genes <i>TPB1</i> and <i>TPB6</i> mediate essential transposon-like excision during the developmental rearrangement of key genes in <i>Tetrahymena thermophila</i> . Genes and Development, 2016, 30, 2724-2736.	2.7	43
86	Recurrent Gene Duplication Leads to Diverse Repertoires of Centromeric Histones in Drosophila Species. Molecular Biology and Evolution, 2017, 34, 1445-1462.	3.5	42
87	Centromeres. Current Biology, 2016, 26, R487-R490.	1.8	39
88	The function and evolution of the restriction factor viperin in primates was not driven by lentiviruses. Retrovirology, 2012, 9, 55.	0.9	35
89	Evolution of a transcriptional regulator from a transmembrane nucleoporin. Genes and Development, 2016, 30, 1155-1171.	2.7	34
90	Ribonuclease H evolution in retrotransposable elements. Cytogenetic and Genome Research, 2005, 110, 392-401.	0.6	32

#	Article	IF	CITATIONS
91	Retroviruses push the envelope for mammalian placentation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2184-2185.	3.3	29
92	Short H2A histone variants are expressed in cancer. Nature Communications, 2021, 12, 490.	5.8	29
93	Innovation of heterochromatin functions drives rapid evolution of essential ZAD-ZNF genes in Drosophila. ELife, 2020, 9, .	2.8	28
94	Retrotransposable Elements R1 and R2 in the rDNA Units of Drosophila mercatorum: abnormal abdomen Revisited. Genetics, 1999, 151, 653-665.	1.2	27
95	A functional map of HIV-host interactions in primary human T cells. Nature Communications, 2022, 13, 1752.	5.8	27
96	finds centromeres in the driver's seat. Trends in Ecology and Evolution, 2005, 20, 151-154.	4.2	26
97	Conservation and Innovation of APOBEC3A Restriction Functions during Primate Evolution. Molecular Biology and Evolution, 2016, 33, 1889-1901.	3.5	25
98	Evolutionary Landscapes of Host-Virus Arms Races. Annual Review of Immunology, 2022, 40, 271-294.	9.5	24
99	Determining the evolutionary potential of a gene. Molecular Biology and Evolution, 1998, 15, 1055-1061.	3.5	22
100	Positive Selection and Multiple Losses of the LINE-1-Derived L1TD1 Gene in Mammals Suggest a Dual Role in Genome Defense and Pluripotency. PLoS Genetics, 2014, 10, e1004531.	1.5	22
101	Rapidly Evolving Toll-3/4 Genes Encode Male-Specific Toll-Like Receptors in Drosophila. Molecular Biology and Evolution, 2017, 34, 2307-2323.	3.5	21
102	The gene drive bubble: New realities. PLoS Genetics, 2017, 13, e1006850.	1.5	21
103	Mutational resilience of antiviral restriction favors primate TRIM5α in host-virus evolutionary arms races. ELife, 2020, 9, .	2.8	20
104	Diversifying selection and functional analysis of interleukin-4 suggests antagonism-driven evolution at receptor-binding interfaces. BMC Evolutionary Biology, 2010, 10, 223.	3.2	19
105	Absence of Positive Selection on Centromeric Histones in Tetrahymena Suggests Unsuppressed Centromere-Drive in Lineages Lacking Male Meiosis. Journal of Molecular Evolution, 2011, 72, 510-520.	0.8	19
106	Recurrent Gene Duplication Diversifies Genome Defense Repertoire in Drosophila. Molecular Biology and Evolution, 2016, 33, 1641-1653.	3.5	18
107	Dynamic Evolution of De Novo DNA Methyltransferases in Rodent and Primate Genomes. Molecular Biology and Evolution, 2020, 37, 1882-1892.	3.5	18
108	Novel Classes and Evolutionary Turnover of Histone H2B Variants in the Mammalian Germline. Molecular Biology and Evolution, 2022, 39, .	3.5	18

#	Article	IF	CITATIONS
109	Birth, Death, and Replacement of Karyopherins in Drosophila. Molecular Biology and Evolution, 2012, 29, 1429-1440.	3.5	17
110	Mitotic fidelity requires transgenerational action of a testis-restricted HP1. ELife, 2015, 4, e07378.	2.8	17
111	EvoChromo: towards a synthesis of chromatin biology and evolution. Development (Cambridge), 2019, 146, .	1.2	16
112	Chromosome Segregation: Human Female Meiosis Breaks All the Rules. Current Biology, 2015, 25, R654-R656.	1.8	15
113	Microbial Genomics: The Expanding Universe ofÂBacterial Defense Systems. Current Biology, 2018, 28, R361-R364.	1.8	14
114	Combinatorial mutagenesis of rapidly evolving residues yields super-restrictor antiviral proteins. PLoS Biology, 2019, 17, e3000181.	2.6	13
115	Biparental contributions of the H2A.B histone variant control embryonic development in mice. PLoS Biology, 2020, 18, e3001001.	2.6	13
116	The novel anti-CRISPR AcrIIA22 relieves DNA torsion in target plasmids and impairs SpyCas9 activity. PLoS Biology, 2021, 19, e3001428.	2.6	13
117	Ancient Coretention of Paralogs of Cid Centromeric Histones and Cal1 Chaperones in Mosquito Species. Molecular Biology and Evolution, 2020, 37, 1949-1963.	3.5	11
118	Density-dependent resistance protects Legionella pneumophila from its own antimicrobial metabolite, HGA. ELife, 2019, 8, .	2.8	11
119	A Surrogate Approach to Study the Evolution of Noncoding DNA Elements That Organize Eukaryotic Genomes. Journal of Heredity, 2009, 100, 624-636.	1.0	10
120	Genetic Conflicts: Stronger Centromeres Win Tug-of-War in Female Meiosis. Current Biology, 2014, 24, R966-R968.	1.8	10
121	Hybridization promotes asexual reproduction in Caenorhabditis nematodes. PLoS Genetics, 2019, 15, e1008520.	1.5	10
122	A Burst of Genetic Innovation in Drosophila Actin-Related Proteins for Testis-Specific Function. Molecular Biology and Evolution, 2020, 37, 757-772.	3.5	10
123	Ten-Kilodalton Domain in Ty3 Gag3-Pol3p between PR and RT Is Dispensable for Ty3 Transposition. Journal of Virology, 2001, 75, 1557-1560.	1.5	9
124	Mobile genetic elements and genome evolution 2014. Mobile DNA, 2014, 5, 26.	1.3	9
125	Did a Single Amino Acid Change Make Ebola Virus More Virulent?. Cell, 2016, 167, 892-894.	13.5	9
126	Speciation and Centromere Evolution. Science, 2001, 294, 2478-2480.	6.0	8

#	Article	IF	CITATIONS
127	Learning to Protect Your Genome on the Fly. Cell, 2011, 147, 1440-1441.	13.5	8
128	Gametic specialization of centromeric histone paralogs in <i>Drosophila virilis</i> . Life Science Alliance, 2021, 4, e202000992.	1.3	7
129	How a Virus Blocks a Cellular Emergency Access Lane to the Nucleus, STAT!. Cell Host and Microbe, 2014, 16, 150-152.	5.1	6
130	Kindr Motors Drive in Meiosis. Cell, 2018, 173, 813-815.	13.5	6
131	A hitchhiker's guide to survival finally makes CENs. Journal of Cell Biology, 2006, 174, 747-749.	2.3	5
132	Diamonds and rust: how transposable elements influence mammalian genomes. EMBO Reports, 2009, 10, 1306-1310.	2.0	5
133	Culture shock. ELife, 2017, 6, .	2.8	5
134	A rapidly evolving genomic toolkit for <i>Drosophila</i> heterochromatin. Fly, 2013, 7, 137-141.	0.9	4
135	A Diversified Portfolio. Annual Review of Virology, 2016, 3, vi-viii.	3.0	4
136	An actin-related protein that is most highly expressed in Drosophila testes is critical for embryonic development. ELife, 2021, 10, .	2.8	4
137	A natural variant of the essential host gene MMS21 restricts the parasitic 2-micron plasmid in Saccharomyces cerevisiae. ELife, 2020, 9, .	2.8	4
138	Molecular Evolution of Drosophilacdc6, an Essential DNA Replication-Licensing Gene, Suggests an Adaptive Choice of Replication Origins. Fly, 2007, 1, 155-163.	0.9	3
139	Speciation via Autoimmunity: A Dangerous Mix. Cell, 2014, 159, 1247-1249.	13.5	3
140	Waddington Redux: <i>De Novo</i> Mutations Underlie the Genetic Assimilation of Stress-Induced Phenocopies in <i>Drosophila melanogaster</i> . Genetics, 2017, 207, 49-51.	1.2	2
141	A balancing act between primate lentiviruses and their receptor. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	2
142	Rapid evolution of centromeres and centromeric/kinetochore proteins. , 2012, , 83-93.		2
143	Evolution of TRIM antiviral genes in primate genomes. Retrovirology, 2009, 6, .	0.9	1
144	R2d2 and Hyperdrive Mechanisms (in Mouse Meiosis). PLoS Genetics, 2015, 11, e1004950.	1.5	1

#	Article	IF	CITATIONS
145	Genetics: Master Regulator or Master of Disguise?. Current Biology, 2017, 27, R844-R847.	1.8	1
146	The PLOS Biology XV Collection: 15 Years of Exceptional Science Highlighted across 12 Months. PLoS Biology, 2019, 17, e3000180.	2.6	1
147	Meiosis: How Gambling Chromosomes Beat the Rules. Current Biology, 2019, 29, R1247-R1248.	1.8	1
148	Putting the brakes on centromere drive in Mimulus. PLoS Genetics, 2021, 17, e1009494.	1.5	1
149	LINE-1 Retroelements Get ZAPped!. PLoS Genetics, 2015, 11, e1005364.	1.5	1
150	Mobile DNA: an evolving field. Mobile DNA, 2014, 5, 16.	1.3	0
151	Harmit Malik. Current Biology, 2020, 30, R98-R100.	1.8	Ο
152	Biparental contributions of the H2A.B histone variant control embryonic development in mice. , 2020, 18, e3001001.		0
153	Biparental contributions of the H2A.B histone variant control embryonic development in mice. , 2020, 18, e3001001.		ο
154	Biparental contributions of the H2A.B histone variant control embryonic development in mice. , 2020, 18, e3001001.		0
155	Biparental contributions of the H2A.B histone variant control embryonic development in mice. , 2020, 18, e3001001.		ο
156	Biparental contributions of the H2A.B histone variant control embryonic development in mice. , 2020, 18, e3001001.		0
157	Biparental contributions of the H2A.B histone variant control embryonic development in mice. , 2020, 18, e3001001.		0