Mengyao Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4807955/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acrylamide induces intrinsic apoptosis and inhibits protective autophagy <i>via</i> the ROS mediated mitochondrial dysfunction pathway in U87-MG cells. Drug and Chemical Toxicology, 2022, 45, 2601-2612.	2.3	11
2	The involvement of oxidative stress, neuronal lesions, neurotransmission impairment, and neuroinflammation in acrylamide-induced neurotoxicity in C57/BL6 mice. Environmental Science and Pollution Research, 2022, 29, 41151-41167.	5.3	11
3	The Mechanism of Acrylamide-Induced Neurotoxicity: Current Status and Future Perspectives. Frontiers in Nutrition, 2022, 9, 859189.	3.7	12
4	Chitopentaose inhibits hepatocellular carcinoma by inducing mitochondrial mediated apoptosis and suppressing protective autophagy. Bioresources and Bioprocessing, 2021, 8, .	4.2	5
5	Effects of chitooligosaccharides on the rebalance of gut microorganisms and their metabolites in patients with nonalcoholic fatty liver disease. Journal of Functional Foods, 2021, 77, 104333.	3.4	12
6	Current innovations in nutraceuticals and functional foods for intervention of non-alcoholic fatty liver disease. Pharmacological Research, 2021, 166, 105517.	7.1	16
7	Suppression of GOLM1 by EGCG through HGF/HGFR/AKT/GSK-3β/β-catenin/c-Myc signaling pathway inhibits cell migration of MDA-MB-231. Food and Chemical Toxicology, 2021, 157, 112574.	3.6	7
8	CD36 and DCAT2 facilitate the lipid-lowering effect of chitooligosaccharides <i>via</i> fatty acid intake and triglyceride synthesis signaling. Food and Function, 2021, 12, 8681-8693.	4.6	12
9	Bioactive Indolyl Diketopiperazines from the Marine Derived Endophytic Aspergillus versicolor DY180635. Marine Drugs, 2020, 18, 338.	4.6	18
10	Chitooligosaccharides display anti-tumor effects against human cervical cancer cells via the apoptotic and autophagic pathways. Carbohydrate Polymers, 2019, 224, 115171.	10.2	47
11	Proteomic profiling of primary astrocytes and co-cultured astrocytes/microglia exposed to acrylamide. NeuroToxicology, 2019, 75, 78-88.	3.0	8
12	Chitooligosaccharide plays essential roles in regulating proline metabolism and cold stress tolerance in rice seedlings. Acta Physiologiae Plantarum, 2019, 41, 1.	2.1	17
13	Enhanced Low Molecular Weight Poly-γ-Clutamic Acid Production in Recombinant Bacillus subtilis 1A751 with Zinc Ion. Applied Biochemistry and Biotechnology, 2019, 189, 411-423.	2.9	11
14	Inhibitory effect of chitooligosaccharides on retinol metabolism and bioavailability in mice. Journal of Food Biochemistry, 2019, 43, e12831.	2.9	4
15	Absorption Characteristics of Chitobiose and Chitopentaose in the Human Intestinal Cell Line Caco-2 and Everted Gut Sacs. Journal of Agricultural and Food Chemistry, 2019, 67, 4513-4523.	5.2	25
16	Chitooligosaccharide supplementation prevents the development of high fat diet-induced non-alcoholic fatty liver disease (NAFLD) in mice via the inhibition of cluster of differentiation 36 (CD36). Journal of Functional Foods, 2019, 57, 7-18.	3.4	26
17	Biological Activities and Potential Application in Food Industry. , 2019, , 163-274.		0
18	Chitobiose alleviates oleic acid-induced lipid accumulation by decreasing fatty acid uptake and triglyceride synthesis in HepG2 cells. Journal of Functional Foods, 2018, 46, 202-211.	3.4	35

Μενσμάο Ζηδο

#	Article	IF	CITATIONS
19	Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Critical Reviews in Food Science and Nutrition, 2017, 57, 1729-1741.	10.3	333
20	Protection against neo-formed contaminants (NFCs)-induced toxicity by phytochemicals. Food and Chemical Toxicology, 2017, 108, 392-406.	3.6	7
21	Acrylamide-induced neurotoxicity in primary astrocytes and microglia: Roles of the Nrf2-ARE and NF-l̂®B pathways. Food and Chemical Toxicology, 2017, 106, 25-35.	3.6	82
22	Effect of acrylamide-induced neurotoxicity in a primary astrocytes/microglial co-culture model. Toxicology in Vitro, 2017, 39, 119-125.	2.4	39
23	The kinetics of the inhibition of acrylamide by glycine in potato model systems. Journal of the Science of Food and Agriculture, 2016, 96, 548-554.	3.5	16
24	Simultaneous determination of free amino acids in Pu-erh tea and their changes during fermentation. Food Chemistry, 2016, 194, 643-649.	8.2	125
25	Blueberry anthocyanins extract inhibits acrylamide-induced diverse toxicity in mice by preventing oxidative stress and cytochrome P450 2E1 activation. Journal of Functional Foods, 2015, 14, 95-101.	3.4	54
26	The chemoprotection of a blueberry anthocyanin extract against the acrylamide-induced oxidative stress in mitochondria: unequivocal evidence in mice liver. Food and Function, 2015, 6, 3006-3012.	4.6	62
27	Evaluation of Protective Effect of Freezeâ€Dried Strawberry, Grape, and Blueberry Powder on Acrylamide Toxicity in Mice. Journal of Food Science, 2015, 80, H869-74.	3.1	26
28	Protection of cyanidin-3-glucoside against oxidative stress induced by acrylamide in human MDA-MB-231 cells. Food and Chemical Toxicology, 2013, 58, 306-310.	3.6	58
29	Degradation Kinetics of Malvidin-3-glucoside and Malvidin-3,5-diglucoside Exposed to Microwave Treatment. Journal of Agricultural and Food Chemistry, 2013, 61, 373-378.	5.2	12
30	The identification of degradation products and degradation pathway of malvidin-3-glucoside and malvidin-3,5-diglucoside under microwave treatment. Food Chemistry, 2013, 141, 3260-3267.	8.2	40