Jakub Jaroszewicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4807463/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modified Histopathological Protocol for Poly-É›-Caprolactone Scaffolds Preserving Their Trabecular, Honeycomb-like Structure. Materials, 2022, 15, 1732.	2.9	1
2	Novel optical photothermal infrared (O-PTIR) spectroscopy for the noninvasive characterization of heritage glass-metal objects. Science Advances, 2022, 8, eabl6769.	10.3	18
3	A comparison of the microstructure-dependent corrosion of dual-structured Mg-Li alloys fabricated by powder consolidation methods: Laser powder bed fusion vs pulse plasma sintering. Journal of Magnesium and Alloys, 2022, 10, 3553-3564.	11.9	10
4	From Matrix Vesicles to Miniature Rocks: Evolution of Calcium Deposits in Calf Costochondral Junctions. Cartilage, 2021, 13, 326S-335S.	2.7	3
5	Naturally Formed Chitinous Skeleton Isolated from the Marine Demosponge Aplysina fistularis as a 3D Scaffold for Tissue Engineering. Materials, 2021, 14, 2992.	2.9	17
6	High-resolution microscopy assisted mechanical modeling of ultrafine electrospun network. Polymer, 2021, 230, 124050.	3.8	1
7	Structural Aspects and Characterization of Structure in the Processing of Titanium Grade4 Different Chips. Metals, 2021, 11, 101.	2.3	4
8	Ultrashort Sintering and Near Net Shaping of Zr-Based AMZ4 Bulk Metallic Glass. Materials, 2021, 14, 5862.	2.9	3
9	Micro-analytical characterization of thorium-rich aggregates from Norwegian NORM sites (Fen) Tj ETQq1 1 0.78	4314 rgBT 1.7	/Oyerlock 10
10	Analysis of Microstructure and Properties of a Ti–AlN Composite Produced by Selective Laser Melting. Materials, 2020, 13, 2218.	2.9	8
11	Functionalization of 3D Chitinous Skeletal Scaffolds of Sponge Origin Using Silver Nanoparticles and Their Antibacterial Properties. Marine Drugs, 2020, 18, 304.	4.6	12
12	Scaffold vascularization method using an adipose-derived stem cell (ASC)-seeded scaffold prefabricated with a flow-through pedicle. Stem Cell Research and Therapy, 2020, 11, 34.	5.5	8
13	Engineering Human-Scale Artificial Bone Grafts for Treating Critical-Size Bone Defects. ACS Applied Bio Materials, 2019, 2, 5077-5092.	4.6	12
14	Corrosion Resistance of Aluminum Coatings Deposited by Warm Spraying on AZ91E Magnesium Alloy. Corrosion, 2019, 75, 668-679.	1.1	3
15	3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head. Biofabrication, 2019, 11, 044101.	7.1	120
16	Thermal properties of multilayer graphene and hBN reinforced copper matrix composites. Journal of Thermal Analysis and Calorimetry, 2019, 138, 3873-3883.	3.6	8
17	3Dâ€Printing of Functionally Graded Porous Materials Using Onâ€Demand Reconfigurable Microfluidics. Angewandte Chemie - International Edition, 2019, 58, 7620-7625.	13.8	73
18	3Dâ€Printing of Functionally Graded Porous Materials Using Onâ€Demand Reconfigurable Microfluidics. Angewandte Chemie, 2019, 131, 7702-7707.	2.0	6

JAKUB JAROSZEWICZ

#	Article	IF	CITATIONS
19	3D bioprinted hydrogel model incorporating <i>β</i> -tricalcium phosphate for calcified cartilage tissue engineering. Biofabrication, 2019, 11, 035016.	7.1	82
20	Formation of calcium phosphate coatings within polycaprolactone scaffolds by simple, alkaline phosphatase based method. Materials Science and Engineering C, 2019, 96, 319-328.	7.3	21
21	Surface Modification of 3D Printed Polycaprolactone Constructs via a Solvent Treatment: Impact on Physical and Osteogenic Properties. ACS Biomaterials Science and Engineering, 2019, 5, 318-328.	5.2	38
22	X-ray physics-based CT-to-composition conversion applied to a tissue engineering scaffold, enabling multiscale simulation of its elastic behavior. Materials Science and Engineering C, 2019, 95, 389-396.	7.3	8
23	Electric Field Assisted Microfluidic Platform for Generation of Tailorable Porous Microbeads as Cell Carriers for Tissue Engineering. Advanced Functional Materials, 2018, 28, 1800874.	14.9	32
24	Three-dimensional printed polycaprolactone-based scaffolds provide an advantageous environment for osteogenic differentiation of human adipose-derived stem cells . Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e473-e485.	2.7	46
25	Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration. Journal of Biomedical Materials Research - Part A, 2018, 106, 201-209.	4.0	122
26	Micro and nanoscale characterization of poly(DL-lactic-co-glycolic acid) films subjected to the L929 cells and the cyclic mechanical load. Micron, 2018, 115, 64-72.	2.2	12
27	Energy Harvesting: Electric Field Assisted Microfluidic Platform for Generation of Tailorable Porous Microbeads as Cell Carriers for Tissue Engineering (Adv. Funct. Mater. 20/2018). Advanced Functional Materials, 2018, 28, 1870133.	14.9	4
28	Investigation of mechanical properties of porous composite scaffolds with tailorable degradation kinetics after <i>in vitro</i> degradation using digital image correlation. Polymer Composites, 2017, 38, 2402-2410.	4.6	11
29	Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers inÂvitro and inÀvivo. Biomaterials, 2017, 131, 98-110.	11.4	252
30	Characterization of Three-Dimensional Printed Composite Scaffolds Prepared with Different Fabrication Methods. Archives of Metallurgy and Materials, 2016, 61, 645-650.	0.6	9
31	In vitro degradation of ZM21 magnesium alloy in simulated body fluids. Materials Science and Engineering C, 2016, 65, 59-69.	7.3	39
32	Discussion: Fracture safety of double-porous hydroxyapatite biomaterials. Bioinspired, Biomimetic and Nanobiomaterials, 2016, 5, 176-177.	0.9	3
33	Fracture safety of double-porous hydroxyapatite biomaterials. Bioinspired, Biomimetic and Nanobiomaterials, 2016, 5, 24-36.	0.9	7
34	The rheological and mechanical properties of magnetic hybrid membranes for gas mixtures separation. Materials Letters, 2016, 183, 170-174.	2.6	14
35	3D bioprinting of BM-MSCs-loaded ECM biomimetic hydrogels for <i>in vitro</i> neocartilage formation. Biofabrication, 2016, 8, 035002.	7.1	211
36	Insight into characteristic features of cartilage growth plate as a physiological template for bone formation. Journal of Biomedical Materials Research - Part A, 2016, 104, 357-366.	4.0	11

JAKUB JAROSZEWICZ

#	Article	IF	CITATIONS
37	Correlation between porous texture and cell seeding efficiency of gas foaming and microfluidic foaming scaffolds. Materials Science and Engineering C, 2016, 62, 668-677.	7.3	70
38	Insights into the macroporosity of freeze-cast hierarchical geopolymers. RSC Advances, 2016, 6, 24635-24644.	3.6	27
39	Synthesis of porous hierarchical geopolymer monoliths byÂice-templating. Microporous and Mesoporous Materials, 2015, 215, 206-214.	4.4	65
40	Chitosan and composite microsphere-based scaffold for bone tissue engineering: evaluation of tricalcium phosphate content influence on physical and biological properties. Journal of Materials Science: Materials in Medicine, 2015, 26, 143.	3.6	30
41	Osteogenesis around CaPâ€coated titanium implants visualized using 3D histology and microâ€computed tomography. Journal of Biomedical Materials Research - Part A, 2015, 103, 3463-3473.	4.0	10
42	Microfluidic Foaming: A Powerful Tool for Tailoring the Morphological and Permeability Properties of Sponge-like Biopolymeric Scaffolds. ACS Applied Materials & amp; Interfaces, 2015, 7, 23660-23671.	8.0	55
43	Highly ordered and tunable polyHIPEs by using microfluidics. Journal of Materials Chemistry B, 2014, 2, 2290.	5.8	80
44	Skeletal ontogeny in basal scleractinian micrabaciid corals. Journal of Morphology, 2013, 274, 243-257.	1.2	8
45	Micro CT-based multiscale elasticity of double-porous (pre-cracked) hydroxyapatite granules for regenerative medicine. Journal of Biomechanics, 2012, 45, 1068-1075.	2.1	32
46	From Micro-CT to Multiscale Mechanics of Double-Porous Hydroxyapatite Granules for Regenerative Medicine. , 2012, , .		0
47	Possibilities and limitations of synchrotron X-ray powder diffraction with double crystal and double multilayer monochromators for microscopic speciation studies. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 775-781.	2.9	16
48	Characterization of a Degraded Cadmium Yellow (CdS) Pigment in an Oil Painting by Means of Synchrotron Radiation Based X-ray Techniques. Analytical Chemistry, 2009, 81, 2600-2610.	6.5	121
49	Advantages of combined μ-XRF and μ-XRD for phase characterization of Ti–B–C ceramics compared with conventional X-ray diffraction. Analytical and Bioanalytical Chemistry, 2008, 391, 1129-1133.	3.7	7
50	Preparation of a TiB2 composite with a nickel matrix by pulse plasma sintering with combustion synthesis. Journal of the European Ceramic Society, 2006, 26, 2427-2430.	5.7	31
51	Pulse Plasma Sintering of Nano-Crystalline Cu Powder. Solid State Phenomena, 2006, 114, 239-244.	0.3	10
52	Nanocrystalline Cu-Al ₂ 0 ₃ Composites Sintered by the Pulse Plasma Technique. Solid State Phenomena, 2006, 114, 227-232.	0.3	11
53	Nanocrystalline Cemented Carbides Sintered by the Pulse Plasma Method. Solid State Phenomena, 2006, 114, 245-250.	0.3	0
54	Characterization of Single-Crystal Dendrite Structure and Porosity in Nickel-Based Superalloys Using X-Ray Micro-Computed Tomography. Advanced Materials Research, 0, 278, 66-71.	0.3	9