
Xiaoqiang Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4807328/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	K7[ColllColl(H2O)W11O39]: a molecular mixed-valence Keggin polyoxometalate catalyst of high stability and efficiency for visible light-driven water oxidation. Energy and Environmental Science, 2013, 6, 1170.	15.6	285
2	Controlled synthesis of Ni(OH) ₂ /Ni ₃ S ₂ hybrid nanosheet arrays as highly active and stable electrocatalysts for water splitting. Journal of Materials Chemistry A, 2018, 6, 6938-6946.	5.2	207
3	In Situ Grown Pristine Cobalt Sulfide as Bifunctional Photocatalyst for Hydrogen and Oxygen Evolution. Advanced Functional Materials, 2017, 27, 1605846.	7.8	145
4	Metal–Organic Framework-Derived Cu-Doped Co ₉ S ₈ Nanorod Array with Less Low-Valence Co Sites as Highly Efficient Bifunctional Electrodes for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 16917-16926.	3.2	129
5	Hierarchical Ni ₃ S ₂ nanosheets coated on Co ₃ O ₄ nanoneedle arrays on 3D nickel foam as an efficient electrocatalyst for the oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 5098-5106.	5.2	110
6	Promoting urea oxidation and water oxidation through interface construction on a CeO ₂ @CoFe ₂ O ₄ heterostructure. Dalton Transactions, 2021, 50, 12301-12307.	1.6	108
7	Controlled synthesis of Co9S8@NiCo2O4 nanorod arrays as binder-free electrodes for water splitting with impressive performance. Journal of Alloys and Compounds, 2021, 885, 160972.	2.8	98
8	Metal-organic framework-derived M (MÂ=ÂFe, Ni, Zn and Mo) doped Co9S8 nanoarrays as efficient electrocatalyst for water splitting: The combination of theoretical calculation and experiment. Journal of Catalysis, 2020, 383, 103-116.	3.1	98
9	Efficient photocatalytic H2 evolution catalyzed by an unprecedented robust molecular semiconductor {Fe11} nanocluster without cocatalysts at neutral conditions. Nano Energy, 2015, 16, 247-255.	8.2	94
10	Efficient photocatalytic water oxidation catalyzed by polyoxometalate [Fe ₁₁ (H ₂ 0) ₁₄ (OH) ₂ (W ₃ O ₁₀)< based on abundant metals. Chemical Communications, 2015, 51, 13925-13928.	sub 22 <td>b>(∲2-SbW<s< td=""></s<></td>	b>(∲ 2 -SbW <s< td=""></s<>
11	Selectively Se-doped Co3O4@CeO2 nanoparticle-dotted nanoneedle arrays for high-efficiency overall water splitting. Applied Surface Science, 2021, 562, 150227.	3.1	89
12	Experimental and Theoretical Understanding on Electrochemical Activation Processes of Nickel Selenide for Excellent Water-Splitting Performance: Comparing the Electrochemical Performances with M–NiSe (M = Co, Cu, and V). ACS Sustainable Chemistry and Engineering, 2019, 7, 19257-19267.	3.2	80
13	Flowerâ^'like 3D CuO microsphere acting as photocatalytic water oxidation catalyst. Chinese Journal of Catalysis, 2016, 37, 123-134.	6.9	69
14	CuCo2O4 microflowers catalyst with oxygen evolution activity comparable to that of noble metal. International Journal of Hydrogen Energy, 2018, 43, 5012-5018.	3.8	64
15	Hexagonal assembly of Co ₃ V ₂ O ₈ nanoparticles acting as an efficient catalyst for visible light-driven water oxidation. Journal of Materials Chemistry A, 2014, 2, 19308-19314.	5.2	58
16	Homogeneous core–shell NiCo2S4 nanorods as flexible electrode for overall water splitting. International Journal of Hydrogen Energy, 2018, 43, 20627-20635.	3.8	55
17	3D MnCo2O4@CoS nanoarrays with different morphologies as an electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 21637-21650.	3.8	48
18	Construction of unique NiCo2S4@Ni3V2O8 hierarchical heterostructures arrays on Ni foam as an efficient electrocatalyst with high stability for water oxidation. International Journal of Hydrogen Energy, 2018, 43, 19955-19964.	3.8	43

#	Article	IF	CITATIONS
19	NiCo ₂ O ₄ @NiMoO ₄ Supported on Nickel Foam for Electrocatalytic Water Splitting. ChemCatChem, 2018, 10, 5533-5540.	1.8	43
20	Rose-like Cu-doped Ni3S2 nanoflowers decorated with thin NiFe LDH nanosheets for high-efficiency overall water and urea electrolysis. Applied Surface Science, 2022, 584, 152622.	3.1	41
21	The mechanism change by switching the reactants from water to hydroxyl ions for electrocatalytic water oxidation: a case study of copper oxide microspheres. Dalton Transactions, 2017, 46, 7327-7331.	1.6	40
22	Metal tungstate dominated NiCo2O4@NiWO4 nanorods arrays as an efficient electrocatalyst forÂwater splitting. International Journal of Hydrogen Energy, 2019, 44, 2883-2888.	3.8	39
23	Transition metal atoms M (M = Mn, Fe, Cu, Zn) doped nickel-cobalt sulfides on the Ni foam for efficient oxygen evolution reaction and urea oxidation reaction. Journal of Alloys and Compounds, 2022, 893, 162269.	2.8	36
24	Controlled synthesis of Co ₃ O ₄ @NiMoO ₄ core–shell nanorod arrays for efficient water splitting. Dalton Transactions, 2018, 47, 12071-12074.	1.6	34
25	Controlled synthesis of NiCo2O4@Ni-MOF on Ni foam as efficient electrocatalyst for urea oxidation reaction and oxygen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 17252-17262.	3.8	30
26	Oxide/sulfide-based hybrid arrays as robust electrocatalysts for water splitting. Dalton Transactions, 2018, 47, 10273-10280.	1.6	29
27	Water Oxidation Catalysis Beginning with CuCo ₂ S ₄ : Investigation of the True Electrochemically Driven Catalyst. Chemistry - an Asian Journal, 2018, 13, 266-270.	1.7	28
28	3D hierarchical Co ₃ O ₄ @Co ₃ S ₄ nanoarrays as anode and cathode materials for oxygen evolution reaction and hydrogen evolution reaction. Dalton Transactions, 2018, 47, 16305-16312.	1.6	27
29	N-doped mesoporous carbon embedded Co nanoparticles for highly efficient and stable H2 generation from hydrolysis of ammonia borane. Journal of Power Sources, 2018, 399, 89-97.	4.0	27
30	CoSe2@NiSe2 nanoarray as better and efficient electrocatalyst for overall water splitting. International Journal of Hydrogen Energy, 2020, 45, 30611-30621.	3.8	26
31	Surface modification of a Co9S8 nanorods with Ni(OH)2 on nickel foam for high water splitting performance. International Journal of Hydrogen Energy, 2019, 44, 19953-19966.	3.8	25
32	The controlled synthesis of nitrogen and iron co-doped Ni ₃ S ₂ @NiP ₂ heterostructures for the oxygen evolution reaction and urea oxidation reaction. Dalton Transactions, 2022, 51, 2444-2451.	1.6	24
33	Cu–Co–M arrays on Ni foam as monolithic structured catalysts for water splitting: effects of co-doped S-P. Dalton Transactions, 2019, 48, 1322-1331.	1.6	23
34	Oxygen vacancy-confined CoMoO ₄ @CoNiO ₂ nanorod arrays for oxygen evolution with improved performance. Dalton Transactions, 2019, 48, 10116-10121.	1.6	22
35	Controlled synthesis and high performance of Zn–Ni–Co–M (MÂ=ÂO, S, P and Se) nanoneedle arrays as an advanced electrode for overall water splitting. Applied Surface Science, 2021, 543, 148818.	3.1	22
36	Three-dimensional Co3O4@NiCo2O4 nanoarrays with different morphologies as electrocatalysts for oxygen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 28598-28606.	3.8	21

#	Article	IF	CITATIONS
37	A nickel molybdenum oxide nanoarray as an efficient and stable electrocatalyst for overall water splitting. New Journal of Chemistry, 2020, 44, 8176-8182.	1.4	21
38	Ferromagnetic nanocrystallines containing copper as an efficient catalyst for photoinduced water oxidation. Physical Chemistry Chemical Physics, 2015, 17, 10648-10655.	1.3	20
39	Controllable synthesis of CoFeMo layered double hydroxide nanoarrays for promoting the oxygen evolution reaction. Dalton Transactions, 2020, 49, 15417-15424.	1.6	20
40	Cuâ€doped Ni ₃ S ₂ Interlaced Nanosheet Arrays as Highâ€efficiency Electrocatalyst Boosting the Alkaline Hydrogen Evolution. ChemCatChem, 2021, 13, 1824-1833.	1.8	20
41	Mo-doped Co9S8 nanorod array as a high performance electrochemical water splitting catalyst in alkaline solution. International Journal of Hydrogen Energy, 2019, 44, 27765-27771.	3.8	19
42	Co3O4 arrays with tailored morphology as robust water oxidation and urea splitting catalyst. Journal of Alloys and Compounds, 2019, 809, 151821.	2.8	18
43	Synthesis of CoMoO4/Co9S8 network arrays on nickel foam as efficient urea oxidation and hydrogen evolution catalyst. International Journal of Hydrogen Energy, 2019, 44, 19595-19602.	3.8	18
44	Ni3S2@Co(OH)2 heterostructures grown on Ni foam as an efficient electrocatalyst for water oxidation. International Journal of Hydrogen Energy, 2019, 44, 22955-22961.	3.8	18
45	Cr doped-Co9S8 nanoarrays as high-efficiency electrocatalysts for water splitting. Journal of Alloys and Compounds, 2020, 824, 153965.	2.8	18
46	In situ grown Co3O4/Co(OH)2 hybrids as efficient electrocatalysts for water oxidation. New Journal of Chemistry, 2018, 42, 4215-4222.	1.4	17
47	Efficient Nobleâ€Metalâ€Free γâ€Fe ₂ O ₃ @NiO Core–Shell Nanostructured Photocatalysts for Water Oxidation. Chemistry - an Asian Journal, 2014, 9, 2745-2750.	1.7	16
48	Morphology ontrolled Selfâ€Assembly and Nanostructured NiO: An Efficient and Robust Photocatalytic Waterâ€Oxidation Catalyst. ChemCatChem, 2015, 7, 2370-2376.	1.8	16
49	NiSe2@NixSy nanorod on nickel foam as efficient bifunctional electrocatalyst for overall water splitting. International Journal of Hydrogen Energy, 2021, 46, 34713-34726.	3.8	16
50	Controllable synthesis of Ni ₃ S ₂ @MOOH/NF (M = Fe, Ni, Cu, Mn and Co) hybrid structure for the efficient hydrogen evolution reaction. Dalton Transactions, 2021, 50, 14001-14008.	1.6	16
51	NiCoP coated on NiCo2S4 nanoarrays as electrode materials for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 30910-30916.	3.8	15
52	Self-supported multidimensional Ni–Fe phosphide networks as novel and robust water splitting catalyst. International Journal of Hydrogen Energy, 2020, 45, 22921-22928.	3.8	15
53	Selective sulfuration, phosphorization and selenylation: A universal strategy toward Co-Ni-M@CeO2/NF (M = O, S, P and Se) interface engineering for efficient water splitting electrocatalysis. Journal of Alloys and Compounds, 2021, 864, 158486.	2.8	15
54	Facile synthesis of Ni doped CoWO4 nanoarrays grown on nickel foam substrates for efficient urea oxidation. International Journal of Hydrogen Energy, 2021, 46, 25114-25120.	3.8	15

#	Article	IF	CITATIONS
55	Oxygen vacancies confined in nickel oxide nanoprism arrays for promoted electrocatalytic water splitting. New Journal of Chemistry, 2020, 44, 1703-1706.	1.4	14
56	Facile fabrication of flower-like CuS/MnCO3 microspheres clusters on nickel foam as an efficient bifunctional catalyst for overall water splitting. International Journal of Hydrogen Energy, 2021, 46, 19948-19961.	3.8	14
57	Construction of a MnCo ₂ O ₄ @Ni _y M _x (S and P) crosslinked network for efficient electrocatalytic water splitting. CrystEngComm, 2019, 21, 7293-7302.	1.3	13
58	Controlled phosphating: a novel strategy toward NiP ₃ @CeO ₂ interface engineering for efficient oxygen evolution electrocatalysis. Dalton Transactions, 2020, 49, 12581-12585.	1.6	13
59	Water splitting catalysis beginning with FeCo2S4@Ni(OH)2: Investigation of the true catalyst with favorable stability. International Journal of Hydrogen Energy, 2019, 44, 31902-31915.	3.8	12
60	Cobalt and nitrogen co-doped Ni3S2 nanoflowers on nickel foam as high-efficiency electrocatalysts for overall water splitting in alkaline media. Dalton Transactions, 2021, 50, 8955-8962.	1.6	12
61	Dual-functional Co3O4@Co2P4O12 nanoneedles supported on nickel foams with enhanced electrochemical performance and excellent stability for overall urea splitting. International Journal of Hydrogen Energy, 2019, 44, 24705-24711.	3.8	11
62	Preparation of 3D nanostructured MnCo ₂ S ₄ as a robust electrocatalyst for overall water splitting. ChemistrySelect, 2019, 4, 4499-4505.	0.7	11
63	Controllable synthesis of Cu–Ni–M (M = S, P and Se) hybrid nanoarrays for efficient water splitting reaction. Dalton Transactions, 2021, 50, 2964-2972.	1.6	11
64	MOF-derived Zn–Co–Ni sulfides with hollow nanosword arrays for high-efficiency overall water and urea electrolysis. Green Energy and Environment, 2023, 8, 798-811.	4.7	11
65	Controlled synthesis of three-dimensional branched Mo–NiCoP@NiCoP/NiXCoYH2PO2 core/shell nanorod heterostructures for high-performance water and urea electrolysis. International Journal of Hydrogen Energy, 2022, 47, 10825-10836.	3.8	11
66	Controlled synthesis of MnS/ZnS hybrid material with different morphology as efficient water and urea electrolysis catalyst. Renewable Energy, 2022, 193, 715-724.	4.3	11
67	Controlled synthesis of M doped N-Ni3S2 (M = Cu, Fe, Co and Ce) on Ni foam as efficient electrocatalyst for urea oxidation reaction and oxygen evolution reaction. Journal of Alloys and Compounds, 2022, 918, 165739.	2.8	11
68	Co, Mn co-doped Fe ₉ S ₁₁ @Ni ₉ S ₈ supported on nickel foam as a high efficiency electrocatalyst for the oxygen evolution reaction and urea oxidation reaction. Dalton Transactions, 2022, 51, 10249-10256.	1.6	10
69	The 3D ultra-thin Cu1-xNixS/NF nanosheet as a highly efficient and stable electrocatalyst for overall water splitting. International Journal of Hydrogen Energy, 2019, 44, 11744-11753.	3.8	9
70	The bimetal synergistic bifunctional electrocatalysts for hydrogen evolution and oxygen evolution reactions. Ionics, 2021, 27, 2139-2150.	1.2	9
71	Controlled synthesis of NixP-Co2P hybrid materials as robust overall water splitting electrocatalyst. International Journal of Hydrogen Energy, 2022, 47, 14515-14527.	3.8	9

Effect of cation substitution on the water splitting performance of spinel cobaltite MCo2S4 (M = Ni,) Tj ETQq0 0 0 g_{33} Prove lock 10 Tf

#	Article	IF	CITATIONS
73	Coupling Co ₂ P/CoSe ₂ heterostructure nanoarrays for boosting overall water splitting. Dalton Transactions, 2021, 50, 6650-6658.	1.6	8
74	Facile synthesis of MWO4 (M=Co, Ni, Zn and Cu) nanoarrays for efficient urea oxidation. International Journal of Hydrogen Energy, 2022, 47, 8875-8882.	3.8	8
75	Fe and Cu dual-doped Ni ₃ S ₄ nanoarrays with less low-valence Ni species for boosting water oxidation reaction. Dalton Transactions, 2022, 51, 1594-1602.	1.6	8
76	Boosting alkaline water splitting and the urea electrolysis kinetic process of a Co ₃ O ₄ nanosheet by electronic structure modulation of F, P co-doping. Dalton Transactions, 2022, 51, 4909-4918.	1.6	8
77	Swapping catalytic active sites from cationic Ni to anionic F in Fe–F–Ni3S2 enables more efficient alkaline oxygen evolution reaction and urea oxidation reaction. International Journal of Hydrogen Energy, 2022, 47, 25595-25607.	3.8	8
78	Controllable synthesis of NiO/Ni ₃ S ₂ hybrid arrays as efficient electrocatalysts for water splitting. New Journal of Chemistry, 2018, 42, 18201-18207.	1.4	7
79	Facile synthesis of molybdenum-based layered double hydroxide nanorods for boosting water oxidation reaction. International Journal of Hydrogen Energy, 2020, 45, 33641-33647.	3.8	7
80	Surface Modulation of Ironâ€doped MoS ₂ Nanosheets by Phytic Acid for Enhanced Water Oxidation. Chemistry - an Asian Journal, 2021, 16, 1786-1791.	1.7	7
81	Controlled Synthesis of CuCo ₂ S ₄ @Ni(OH) ₂ Hybrid Nanorod Arrays for Water Splitting at an Ultralow Cell Voltage of 1.47â€V. Chemistry - an Asian Journal, 2019, 14, 3386-3396.	1.7	6
82	Flowerâ€like Feâ€Coâ€M (M=S, O, P and Se) Nanosheet Arrays Grown on Nickel Foam as Highâ€efficiency Bifunctional Electrocatalysts. Chemistry - an Asian Journal, 2021, 16, 959-965.	1.7	6
83	Hierarchical sulfide nanoarrays as an efficient bifunctional electrocatalyst for overall water splitting. Ionics, 2021, 27, 2591-2602.	1.2	6
84	Role of Ce in the enhanced performance of the water oxidation reaction and urea oxidation reaction for NiFe layered double hydroxides. Dalton Transactions, 2022, 51, 8240-8248.	1.6	6
85	Controlled synthesis of P-Co ₃ O ₄ @NiCo-LDH/NF nanoarrays as binder-free electrodes for water splitting. Dalton Transactions, 2021, 50, 10880-10887.	1.6	5
86	Controlled Synthesis of Cr o _{0.85} Se Nanoarrays for Water Splitting at an Ultralow Cell Voltage of 1.43â€V. Chemistry - an Asian Journal, 2020, 15, 1110-1117.	1.7	2
87	Superior Water Oxidation Performance over CoMoO ₄ with High Stability: Synergistic Effect of Oxygen Vacancies and Morphology. ChemistrySelect, 2020, 5, 13305-13308.	0.7	1
88	Effect of Temperature on Thermal Treatment of Silica Coated Magnetic Nanoparticles. Chemical Research in Chinese Universities, 2018, 34, 857-861.	1.3	0