
Qingqiang Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4807319/publications.pdf Version: 2024-02-01

Οινεοιανό Υλο

#	Article	IF	CITATIONS
1	3D printing of a lithium-calcium-silicate crystal bioscaffold with dual bioactivities for osteochondral interface reconstruction. Biomaterials, 2019, 196, 138-150.	5.7	170
2	Copper-incorporated bioactive glass-ceramics inducing anti-inflammatory phenotype and regeneration of cartilage/bone interface. Theranostics, 2019, 9, 6300-6313.	4.6	105
3	Micro/Nanometerâ€Structured Scaffolds for Regeneration of Both Cartilage and Subchondral Bone. Advanced Functional Materials, 2019, 29, 1806068.	7.8	79
4	3D Molecularly Functionalized Cellâ€Free Biomimetic Scaffolds for Osteochondral Regeneration. Advanced Functional Materials, 2019, 29, 1807356.	7.8	75
5	A multifunctional anti-inflammatory drug that can specifically target activated macrophages, massively deplete intracellular H2O2, and produce large amounts CO for a highly efficient treatment of osteoarthritis. Biomaterials, 2020, 255, 120155.	5.7	63
6	3D-printed Mg-incorporated PCL-based scaffolds: A promising approach for bone healing. Materials Science and Engineering C, 2021, 129, 112372.	3.8	61
7	Copper-based biomaterials for bone and cartilage tissue engineering. Journal of Orthopaedic Translation, 2021, 29, 60-71.	1.9	57
8	3D-printed navigation template in proximal femoral osteotomy for older children with developmental dysplasia of the hip. Scientific Reports, 2017, 7, 44993.	1.6	49
9	IGF-1-releasing PLGA nanoparticles modified 3D printed PCL scaffolds for cartilage tissue engineering. Drug Delivery, 2020, 27, 1106-1114.	2.5	49
10	An all-silk-derived functional nanosphere matrix for sequential biomolecule delivery and in situ osteochondral regeneration. Bioactive Materials, 2020, 5, 832-843.	8.6	48
11	Co-inspired hydroxyapatite-based scaffolds for vascularized bone regeneration. Acta Biomaterialia, 2021, 119, 419-431.	4.1	47
12	Chondrogenic Regeneration Using Bone Marrow Clots and a Porous Polycaprolactone-Hydroxyapatite Scaffold by Three-Dimensional Printing. Tissue Engineering - Part A, 2015, 21, 1388-1397.	1.6	45
13	Antimicrobial Activity of 3D-Printed Poly(ε-Caprolactone) (PCL) Composite Scaffolds Presenting Vancomycin-Loaded Polylactic Acid-Glycolic Acid (PLGA) Microspheres. Medical Science Monitor, 2018, 24, 6934-6945.	0.5	44
14	Percutaneous kyphoplasty assisted with/without mixed reality technology in treatment of OVCF with IVC: a prospective study. Journal of Orthopaedic Surgery and Research, 2019, 14, 255.	0.9	43
15	3D printed dual-functional biomaterial with self-assembly micro-nano surface and enriched nano argentum for antibacterial and bone regeneration. Applied Materials Today, 2019, 17, 206-215.	2.3	42
16	Application of computer-aided design and 3D-printed navigation template in Locking Compression Pediatric Hip Plate \$\$^{mathrm{TM}}\$\$ TM placement for pediatric hip disease. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 865-871.	1.7	37
17	Adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells in 3D printed poly-Îμ-caprolactone/hydroxyapatite scaffolds combined with bone marrow clots. Molecular Medicine Reports, 2017, 16, 5078-5084.	1.1	35
18	3D printing of Mo-containing scaffolds with activated anabolic responses and bi-lineage bioactivities. Theranostics, 2018, 8, 4372-4392.	4.6	33

QINGQIANG YAO

#	Article	IF	CITATIONS
19	Enzymatically crosslinked silk-nanosilicate reinforced hydrogel with dual-lineage bioactivity for osteochondral tissue engineering. Materials Science and Engineering C, 2021, 127, 112215.	3.8	32
20	<p>In vitro behavior of tendon stem/progenitor cells on bioactive electrospun nanofiber membranes for tendon-bone tissue engineering applications</p> . International Journal of Nanomedicine, 2019, Volume 14, 5831-5848.	3.3	29
21	Three-dimensional polycaprolactone–hydroxyapatite scaffolds combined with bone marrow cells for cartilage tissue engineering. Journal of Biomaterials Applications, 2015, 30, 160-170.	1.2	28
22	Loss of Klotho contributes to cartilage damage by derepression of canonical Wnt/β-catenin signaling in osteoarthritis mice. Aging, 2019, 11, 12793-12809.	1.4	20
23	Multifunctional polyphenol-based silk hydrogel alleviates oxidative stress and enhances endogenous regeneration of osteochondral defects. Materials Today Bio, 2022, 14, 100251.	2.6	20
24	Cell-Free Biomimetic Scaffold with Cartilage Extracellular Matrix-Like Architectures for <i>In Situ</i> Inductive Regeneration of Osteochondral Defects. ACS Biomaterials Science and Engineering, 2020, 6, 6917-6925.	2.6	18
25	Enhanced recovery after surgery protocols in total knee arthroplasty via midvastus approach: a randomized controlled trial. BMC Musculoskeletal Disorders, 2021, 22, 856.	0.8	14
26	Use of quantitative MRI for the detection of progressive cartilage degeneration in a miniâ€pig model of osteoarthritis caused by anterior cruciate ligament transection. Journal of Magnetic Resonance Imaging, 2015, 42, 1032-1038.	1.9	12
27	Cartilage matrix changes in contralateral mobile knees in a rabbit model of osteoarthritis induced by immobilization. BMC Musculoskeletal Disorders, 2015, 16, 224.	0.8	11
28	Lithium Chloride-Releasing 3D Printed Scaffold for Enhanced Cartilage Regeneration. Medical Science Monitor, 2019, 25, 4041-4050.	0.5	11
29	Chondrogenic preconditioning of mesenchymal stem/stromal cells within a magnetic scaffold for osteochondral repair. Biofabrication, 2022, 14, 025020.	3.7	11
30	Composite scaffolds composed of bone marrow mesenchymal stem cell-derived extracellular matrix and marrow clots promote marrow cell retention and proliferation. Journal of Biomedical Materials Research - Part A, 2015, 103, 2374-2382.	2.1	9
31	Rg1 in combination with mannitol protects neurons against glutamate-induced ER stress via the PERK-eIF2 α-ATF4 signaling pathway. Life Sciences, 2020, 263, 118559.	2.0	9
32	Using 7.0T MRI T2 mapping to detect early changes of the cartilage matrix caused by immobilization in a rabbit model of immobilization-induced osteoarthritis. Magnetic Resonance Imaging, 2015, 33, 1000-1006.	1.0	8
33	3D Printing of Black Bioceramic Scaffolds with Micro/Nanostructure for Bone Tumorâ€Induced Tissue Therapy. Advanced Healthcare Materials, 2021, 10, e2101181.	3.9	8
34	Conservative vs Surgical Treatment of Impacted Femoral Neck Fracture in Patients 75 Years and Older. Journal of the American Geriatrics Society, 2020, 68, 2214-2221.	1.3	7
35	Randomized trial of 3-drug combination for lumbar nerve root epidural injections with a TNF-α inhibitor in treatment of lumbar stenosis. British Journal of Neurosurgery, 2020, 34, 168-171.	0.4	7
36	A feasibility study of individual 3D-printed navigation template for the deep external fixator pin position on the iliac crest. BMC Musculoskeletal Disorders, 2020, 21, 478.	0.8	6

QINGQIANG YAO

#	Article	IF	CITATIONS
37	Three-Dimensional-Printed Guiding Template for Unicompartmental Knee Arthroplasty. BioMed Research International, 2020, 2020, 1-10.	0.9	6
38	The Effects of a Semiconstrained Integrated Artificial Disc on Zygapophyseal Joint Pressure and Displacement. Spine, 2014, 39, E1510-E1517.	1.0	5
39	Analysis of Recombinant Human Bone Morphogenetic Protein-2 Use in the Treatment of Lumbar Degenerative Spondylolisthesis. Global Spine Journal, 2016, 6, 749-755.	1.2	4
40	Mechanical effect on the evolution of bone formation during bone ingrowth into a 3D-printed Ti-alloy scaffold. Materials Letters, 2020, 273, 127921.	1.3	4
41	Investigations of Cartilage Matrix Degeneration in Patients with Early-Stage Femoral Head Necrosis. Medical Science Monitor, 2017, 23, 5783-5792.	0.5	4
42	High TRB3 expression induces chondrocyte autophagy and senescence in osteoarthritis cartilage. Aging, 2022, 14, 5366-5375.	1.4	4
43	Reconstruction of compressively sampled MR images based on a local shrinkage thresholding algorithm with curvelet transform. Medical and Biological Engineering and Computing, 2019, 57, 2145-2158.	1.6	3
44	Biomimetic Scaffolds: 3D Molecularly Functionalized Cellâ€Free Biomimetic Scaffolds for Osteochondral Regeneration (Adv. Funct. Mater. 6/2019). Advanced Functional Materials, 2019, 29, 1970036.	7.8	2