
Michael Springborg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4806945/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Theoretical Determination of the Most Stable Structures of Ni _{<i>m</i>} Ag _{<i>n</i>} Bimetallic Nanoalloys. Journal of Physical Chemistry C, 2011, 115, 7179-7192.	3.1	64
2	Global Minimum Structures and Magic Clusters of Cu _{<i>m</i>} Ag _{<i>n</i>} Nanoalloys. Journal of Physical Chemistry C, 2011, 115, 22148-22162.	3.1	64
3	Performance of Hybrid DFT Compared to MP2 Methods in Calculating Nonlinear Optical Properties of Divinylpyrene Derivative Molecules. Journal of Physical Chemistry A, 2016, 120, 8843-8852.	2.5	43
4	Efficient vector potential method for calculating electronic and nuclear response of infinite periodic systems to finite electric fields. Journal of Chemical Physics, 2007, 126, 104107.	3.0	38
5	Theoretical study of structural, electronic, and optical properties ofZnmSenclusters. Physical Review B, 2006, 73, .	3.2	35
6	Structure and energetics of nickel, copper, and gold clusters. European Physical Journal D, 2005, 34, 187-190.	1.3	34
7	Unbiased Determination of Structural and Electronic Properties of Gold Clusters with up to 58 Atoms. Journal of Physical Chemistry C, 2007, 111, 12528-12535.	3.1	34
8	The Effects of Organisation, Embedding and Surfactants on the Properties of Cadmium Chalcogenide (CdS, CdSe and CdS/CdSe) Semiconductor Nanoparticles. European Journal of Inorganic Chemistry, 2005, 2005, 3585-3596.	2.0	33
9	Theoretical Study of the Structure and Energetics of Silver Clusters. Journal of Physical Chemistry C, 2007, 111, 12577-12587.	3.1	32
10	Global structure optimization study on Au 2-20. European Physical Journal D, 2007, 43, 15-18.	1.3	32
11	Analysis of vector potential approach for calculating linear and nonlinear responses of infinite periodic systems to a finite static external electric field. Physical Review B, 2008, 77, .	3.2	32
12	Density Functional Theory Descriptors for Ionic Liquids and the Charge-Transfer Interpretation of the Haven Ratio. Journal of Physical Chemistry A, 2019, 123, 851-861.	2.5	22
13	Termination effects in electric field polarization of periodic quasi-one-dimensional systems. Physical Review B, 2010, 82, .	3.2	19
14	Solvent effects on the absorption/emission spectra of an organic chromophore: A theoretical study. Computational and Theoretical Chemistry, 2008, 866, 15-20.	1.5	17
15	How much can donor/acceptor-substitution change the responses of long push–pull systems to DC fields?. Chemical Physics Letters, 2008, 454, 105-113.	2.6	16
16	From properties to materials: An efficient and simple approach. Journal of Chemical Physics, 2017, 147, 234105.	3.0	16
17	Density Functional Theory Descriptors for Ionic Liquids and the Introduction of a Coulomb Correction. Journal of Physical Chemistry A, 2019, 123, 4188-4200.	2.5	16
18	A combined experimental and theoretical approach for structural study on a new cinnamoyl derivative of 2-acetyl-1,3-indandione and its metal(II) complexes. Structural Chemistry, 2009, 20, 101-111.	2.0	15

MICHAEL SPRINGBORG

#	Article	IF	CITATIONS
19	On the dipolar electric field response of large systems. Theoretical Chemistry Accounts, 2011, 130, 687-700.	1.4	13
20	Mixed Si-Ge clusters, solar-energy harvesting, and inverse-design methods. Computational and Theoretical Chemistry, 2017, 1107, 14-22.	2.5	13
21	Structural, energetic, and electronic properties of Sin, Gen, and SinGen clusters. European Physical Journal D, 2009, 52, 39-42.	1.3	12
22	Theoretical study on the structural properties of alkali-metal heteroclusters. European Physical Journal D, 2009, 52, 35-38.	1.3	11
23	Theoretical investigation of the hydrogenation induced atomic rearrangements in palladium rich intermetallic compounds MPd3 (M = Mg, In, Tl). European Physical Journal B, 2011, 82, 1-6.	1.5	11
24	The impact of functionalization of organic semiconductors by electron donating groups on the reorganization energy. European Physical Journal D, 2019, 73, 1.	1.3	11
25	Electronic properties of Ge–Si nanoparticles. European Physical Journal D, 2007, 43, 213-216.	1.3	10
26	Structural and thermodynamic properties of Au2–20 clusters. Theoretical Chemistry Accounts, 2011, 130, 1001-1008.	1.4	10
27	Structural and energetic properties of sodium clusters. European Physical Journal D, 2007, 43, 19-22.	1.3	8
28	Electronic responses of long chains to electrostatic fields: Hartree-Fock vs. density-functional theory: A model study. Journal of Chemical Physics, 2014, 140, 054117.	3.0	8
29	Surfaces, Shapes, and Bulk Properties of Crystals. Journal of Physical Chemistry C, 2018, 122, 11926-11932.	3.1	8
30	Application of an inverse-design method to optimizing porphyrins in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2019, 21, 5834-5844.	2.8	8
31	Surface effects on converse piezoelectricity of crystals. Physical Chemistry Chemical Physics, 2017, 19, 24724-24734.	2.8	7
32	Elemental chains. International Journal of Quantum Chemistry, 2009, 109, 837-848.	2.0	6
33	Growth patterns and structural motifs of cadmium clusters with up to 60 atoms: disordered or not?. Physical Chemistry Chemical Physics, 2016, 18, 28524-28537.	2.8	6
34	Magnetostructural phase transition assisted by temperature in Ag–αMnO ₂ : a density functional theory study. Physical Chemistry Chemical Physics, 2016, 18, 7442-7448.	2.8	6
35	Theoretical study of the structural and energetic properties of platinum clusters with up to 60 atoms. Structural Chemistry, 2021, 32, 469-479.	2.0	6
36	Energetic, Structural, and Vibrational Properties of 4,4′-Methylenediphenyl Diisocyanate with Relevance for Adhesion. Journal of Physical Chemistry A, 2016, 120, 4256-4266.	2.5	5

#	Article	IF	CITATIONS
37	Growth patterns, shapes, and electronic properties of mixed Si m Ge n clusters with <mml:math altimg="si58.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi><mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mi>ml:mo>+<mml:mi>ml:mo>+<mml:mi>ml:mo>+<mml:mi>ml:mo>+<mml:mi>ml:mo>+<mml:mi>ml:mo>+<mml:mi>ml:mo>+<mml:mi>ml:mo>+<mml:mi>ml:mo>+<mml:mi>ml:mo>+<mml:mi>ml:mo>+<mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><</mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:math>	>â© 7 2 <td>nl:mo><mml:r< td=""></mml:r<></td>	nl:mo> <mml:r< td=""></mml:r<>
38	Computational study of the reactivity of cytosine derivatives. Journal of Computational Chemistry, 2017, 38, 1049-1056.	3.3	5
39	Reactivity descriptors for DNA bases and the methylation of cytosine. International Journal of Quantum Chemistry, 2018, 118, e25538.	2.0	5
40	Theoretical study of the mechanism behind the site- and enantio-selectivity of C–H functionalization catalysed by chiral dirhodium catalyst. Physical Chemistry Chemical Physics, 2020, 22, 9561-9572.	2.8	5
41	Structural, Energetic, and Magnetic Properties of Ag \$\$_{n-m}\$\$ n - m Rh \$\$_{m}\$\$ m and Ag \$\$_{m}\$\$ m Rh \$\$_{n-m}\$\$ n - m Clusters with \$\$n le 20\$\$ n â‰ 2 0 and \$\$m=0,1\$\$ m = 0 , 1. Journal of Cluster Science, 2016, 27, 913-933.	3.3	4
42	Electronic orbital response of regular extended and infinite periodic systems to magnetic fields. I. Theoretical foundations for static case. Journal of Chemical Physics, 2017, 147, 104101.	3.0	4
43	Global Optimization of Li and Na Clusters: Application of a Modified Embedded Atom Method. Journal of Cluster Science, 2020, 31, 769-790.	3.3	4
44	Deposition of Ni 13 and Cu 13 clusters on Ni(111) and Cu(111) surfaces. European Physical Journal D, 2007, 45, 425-431.	1.3	3
45	Shape dependence of optical properties of sodium clusters. Applied Physics B: Lasers and Optics, 2013, 112, 177-184.	2.2	3
46	On the response of large systems to electrostatic fields. , 2012, , .		2
47	Temperature Dependence of Stability of Copper Clusters. Zeitschrift Fur Physikalische Chemie, 2016, 230, 1037-1055.	2.8	2
48	Ultranarrow heterojunctions of armchair-graphene nanoribbons as resonant-tunnelling devices. Physical Chemistry Chemical Physics, 2019, 21, 24867-24875.	2.8	2
49	Theoretical Treatment for Properties of Surfaces and Their Interplay with Bulk Properties of Crystals. Advanced Theory and Simulations, 2019, 2, 1800117.	2.8	2
50	Optimizing small conjugated molecules for solar-cell applications using an inverse-design method. Journal of Molecular Graphics and Modelling, 2020, 100, 107654.	2.4	2
51	Course on the Use of DFT Calculations to Improve Understanding of Phase Diagrams in Solid-State Chemistry. Journal of Chemical Education, 2021, 98, 3207-3217.	2.3	2
52	Structure and stability of propellane-like E 2 E 2 \hat{a} € ² . Journal of Molecular Modeling, 2018, 24, 190.	1.8	1
53	<pre>\$\$hbox {Ag}_{m} hbox {Rh}_n\$\$ clusters with \$\$m+nle 55\$\$. Theoretical Chemistry Accounts, 2021, 140, 1.</pre>	1.4	1
54	Silver hollandite (AgxMn8O16 , xâ‰월): A highly anisotropic half-metal for spintronics. Physical Review Materials, 2021, 5, .	2.4	1

#	Article	IF	CITATIONS
55	Role of the Backbone when Optimizing Functional Groups─A Theoretical Study Based on an Improved Inverse-Design Approach. Journal of Physical Chemistry A, 2022, 126, 1289-1299.	2.5	1
56	DFT evaluation of structural, electronic and variation properties for complex carbohydrates with biological interest. Journal of Biomolecular Structure and Dynamics, 2023, 41, 5981-5989.	3.5	1
57	Infinite and finite solids. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2006, 632, 2077-2077.	1.2	0
58	Some continuous geometry transitions and the consequences for a transition-metal atom. International Journal of Quantum Chemistry, 2007, 107, 1073-1084.	2.0	0
59	Structural Responses of Infinite Periodic Systems to Electrostatic Fields. , 2009, , .		0
60	Effect of Substitution at the Ends of Long Chains on their Responses to Electrostatic Fields. , 2009, , .		0
61	L'Oeuvre of Bernie Kirtman. , 2012, , .		0
62	On the dependence of bulk properties on surfaces. , 2012, , .		0
63	Determining the size dependence of structural properties of clusters. , 2012, , .		0
64	Clusters: From trimers to nanoparticles. AIP Conference Proceedings, 2015, , .	0.4	0
65	Calculation of electron binding energies of \$\$hbox {Na}_{55}^-\$\$ Na 55 - clusters. Applied Physics B: Lasers and Optics, 2016, 122, 1.	2.2	0
66	Mechanistic Details and Conformational Behavior of Selective Peptide Linkage Facilitated by Au _n Clusters. ChemistrySelect, 2020, 5, 8352-8362.	1.5	0
67	Kinetics and Thermodynamics of CO Oxidation by (TiO2)6. Molecules, 2021, 26, 6415.	3.8	О