Claudiu Schirda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4806548/publications.pdf

Version: 2024-02-01

42 papers

2,164 citations

257101 24 h-index 276539 41 g-index

42 all docs 42 docs citations

42 times ranked 3136 citing authors

#	Article	IF	Citations
1	Dynamics of hepatic steatosis resolution and changes in gut microbiome with weight loss in nonalcoholic fatty liver disease. Obesity Science and Practice, 2021, 7, 217-225.	1.0	5
2	Fast, regional threeâ€dimensional hybrid (1Dâ€Hadamard 2Dâ€rosette) proton MR spectroscopic imaging in the human temporal lobes. NMR in Biomedicine, 2021, 34, e4507.	1.6	5
3	Rates of Incidental Findings in Brain Magnetic Resonance Imaging in Children. JAMA Neurology, 2021, 78, 578.	4.5	28
4	Baseline brain function in the preadolescents of the ABCD Study. Nature Neuroscience, 2021, 24, 1176-1186.	7.1	48
5	Substance use patterns in 9-10 year olds: Baseline findings from the adolescent brain cognitive development (ABCD) study. Drug and Alcohol Dependence, 2021, 227, 108946.	1.6	19
6	Correspondence Between Perceived Pubertal Development and Hormone Levels in 9-10 Year-Olds From the Adolescent Brain Cognitive Development Study. Frontiers in Endocrinology, 2020, 11, 549928.	1.5	45
7	Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. NeuroImage, 2019, 202, 116091.	2.1	539
8	Decreased functional connectivity in the fronto-parietal network in children with mood disorders compared to children with dyslexia during rest: An fMRI study. NeuroImage: Clinical, 2018, 18, 582-590.	1.4	6
9	Fast 3 <scp>D</scp> rosette spectroscopic imaging of neocortical abnormalities at 3 <scp>T</scp> : Assessment of spectral quality. Magnetic Resonance in Medicine, 2018, 79, 2470-2480.	1.9	11
10	Reward-related neural activity and structure predict future substance use in dysregulated youth. Psychological Medicine, 2017, 47, 1357-1369.	2.7	18
11	Brain Regional Blood Flow and Working Memory Performance Predict Change in Blood Pressure Over 2 Years. Hypertension, 2017, 70, 1132-1141.	1.3	10
12	Reading related white matter structures in adolescents are influenced more by dysregulation of emotion than behavior. NeuroImage: Clinical, 2017, 15, 732-740.	1.4	3
13	Longitudinal Relationships Among Activity in Attention Redirection Neural Circuitry and Symptom Severity in Youth. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2017, 2, 336-345.	1.1	8
14	Using machine learning and surface reconstruction to accurately differentiate different trajectories of mood and energy dysregulation in youth. PLoS ONE, 2017, 12, e0180221.	1.1	0
15	Harmonizing DTI measurements across scanners to examine the development of white matter microstructure in 803 adolescents of the NCANDA study. NeuroImage, 2016, 130, 194-213.	2.1	85
16	In vivo brain rosette spectroscopic imaging (RSI) with LASER excitation, constant gradient strength readout, and automated LCModel quantification for all voxels. Magnetic Resonance in Medicine, 2016, 76, 380-390.	1.9	18
17	Predicting clinical outcome from reward circuitry function and white matter structure in behaviorally and emotionally dysregulated youth. Molecular Psychiatry, 2016, 21, 1194-1201.	4.1	32
18	Can Emotional and Behavioral Dysregulation in Youth Be Decoded from Functional Neuroimaging?. PLoS ONE, 2016, 11, e0117603.	1.1	18

#	Article	IF	CITATIONS
19	Iterative projection onto convex sets for quantitative susceptibility mapping. Magnetic Resonance in Medicine, 2015, 73, 697-703.	1.9	3
20	White Matter Structure in Youth With Behavioral and Emotional Dysregulation Disorders. JAMA Psychiatry, 2015, 72, 367.	6.0	32
21	Decreased amygdala–insula resting state connectivity in behaviorally and emotionally dysregulated youth. Psychiatry Research - Neuroimaging, 2015, 231, 77-86.	0.9	61
22	Parsing Dimensional vs Diagnostic Category–Related Patterns of Reward Circuitry Function in Behaviorally and Emotionally Dysregulated Youth in the Longitudinal Assessment of Manic Symptoms Study. JAMA Psychiatry, 2014, 71, 71.	6.0	45
23	Clinical cell therapy imaging using a perfluorocarbon tracer and fluorineâ€19 MRI. Magnetic Resonance in Medicine, 2014, 72, 1696-1701.	1.9	203
24	Behavioral and emotional dysregulation trajectories marked by prefrontal–amygdala function in symptomatic youth. Psychological Medicine, 2014, 44, 2603-2615.	2.7	20
25	Glutamate and GABA contributions to medial prefrontal cortical activity to emotion: Implications for mood disorders. Psychiatry Research - Neuroimaging, 2014, 223, 253-260.	0.9	34
26	Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI. Magnetic Resonance in Medicine, 2014, 72, spcone-spcone.	1.9	2
27	Changes of Cine Cerebrospinal Fluid Dynamics in Patients with Multiple Sclerosis Treated with Percutaneous Transluminal Angioplasty: A Case-control Study. Journal of Vascular and Interventional Radiology, 2013, 24, 829-838.	0.2	31
28	Emotional Face Processing in Pediatric Bipolar Disorder: Evidence for Functional Impairments in the Fusiform Gyrus. Journal of the American Academy of Child and Adolescent Psychiatry, 2013, 52, 1314-1325.e3.	0.3	33
29	White Matter Hyperintensities on 1.5 and 3 Tesla Brain MRI in Healthy Individuals. Journal of Biomedical Graphics and Computing, $2013,3,.$	0.2	5
30	Gray matter SWI-filtered phase and atrophy are linked to disability in MS. Frontiers in Bioscience - Elite, 2013, E5, 525-532.	0.9	24
31	Abnormal subcortical deep-gray matter susceptibility-weighted imaging filtered phase measurements in patients with multiple sclerosis. Neurolmage, 2012, 59, 331-339.	2.1	176
32	Cine cerebrospinal fluid imaging in multiple sclerosis. Journal of Magnetic Resonance Imaging, 2012, 36, 825-834.	1.9	46
33	Decreased brain venous vasculature visibility on susceptibility-weighted imaging venography in patients with multiple sclerosis is related to chronic cerebrospinal venous insufficiency. BMC Neurology, 2011, 11, 128.	0.8	50
34	Hypoperfusion of brain parenchyma is associated with the severity of chronic cerebrospinal venous insufficiency in patients with multiple sclerosis: a cross-sectional preliminary report. BMC Medicine, 2011, 9, 22.	2.3	77
35	Use of MR Venography for Characterization of the Extracranial Venous System in Patients with Multiple Sclerosis and Healthy Control Subjects. Radiology, 2011, 258, 562-570.	3.6	81
36	Value of MR Venography for Detection of Internal Jugular Vein Anomalies in Multiple Sclerosis: A Pilot Longitudinal Study. American Journal of Neuroradiology, 2011, 32, 938-946.	1.2	63

#	Article	IF	CITATION
37	Use of neck magnetic resonance venography, Doppler sonography and selective venography for diagnosis of chronic cerebrospinal venous insufficiency: a pilot study in multiple sclerosis patients and healthy controls. International Angiology, 2010, 29, 127-39.	0.4	66
38	CSF dynamics and brain volume in multiple sclerosis are associated with extracranial venous flow anomalies: a pilot study. International Angiology, 2010, 29, 140-8.	0.4	24
39	Chronic cerebrospinal venous insufficiency and iron deposition on susceptibility-weighted imaging in patients with multiple sclerosis: a pilot case-control study. International Angiology, 2010, 29, 158-75.	0.4	54
40	Rosette spectroscopic imaging: Optimal parameters for aliasâ€free, high sensitivity spectroscopic imaging. Journal of Magnetic Resonance Imaging, 2009, 29, 1375-1385.	1.9	34
41	Signal abnormalities on 1.5 and 3ÂTesla brain MRI in multiple sclerosis patients and healthy controls. A morphological and spatial quantitative comparison study. Neurolmage, 2009, 47, 1352-1362.	2.1	26
42	The severity of chronic cerebrospinal venous insufficiency in patients with multiple sclerosis is related to altered cerebrospinal fluid dynamics. Functional Neurology, 2009, 24, 133-8.	1.3	76