
Hans Ellegren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4806113/publications.pdf Version: 2024-02-01

HANS FLIECDEN

#	Article	IF	CITATIONS
1	Microsatellites: simple sequences with complex evolution. Nature Reviews Genetics, 2004, 5, 435-445.	7.7	1,854
2	Whole-genome analyses resolve early branches in the tree of life of modern birds. Science, 2014, 346, 1320-1331.	6.0	1,583
3	A Simple and Universal Method for Molecular Sexing of Non-Ratite Birds. Journal of Avian Biology, 1999, 30, 116.	0.6	1,504
4	The evolution of sex-biased genes and sex-biased gene expression. Nature Reviews Genetics, 2007, 8, 689-698.	7.7	796
5	The genome of a songbird. Nature, 2010, 464, 757-762.	13.7	770
6	Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science, 1994, 263, 1771-1774.	6.0	636
7	The genomic landscape of species divergence in Ficedula flycatchers. Nature, 2012, 491, 756-760.	13.7	589
8	Determinants of genetic diversity. Nature Reviews Genetics, 2016, 17, 422-433.	7.7	587
9	Microsatellite mutations in the germline:. Trends in Genetics, 2000, 16, 551-558.	2.9	576
10	Genome sequencing and population genomics in non-model organisms. Trends in Ecology and Evolution, 2014, 29, 51-63.	4.2	570
11	The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Research, 1993, 21, 1111-1115.	6.5	495
12	The PiGMaP consortium linkage map of the pig (Sus scrofa). Mammalian Genome, 1995, 6, 157-175.	1.0	475
13	Widespread Origins of Domestic Horse Lineages. Science, 2001, 291, 474-477.	6.0	423
14	First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds. Proceedings of the Royal Society B: Biological Sciences, 1996, 263, 1635-1641.	1.2	404
15	A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature, 2004, 432, 717-722.	13.7	391
16	Making sense of genomic islands of differentiation in light of speciation. Nature Reviews Genetics, 2017, 18, 87-100.	7.7	389
17	Rescue of a severely bottlenecked wolf (Canis lupus) population by a single immigrant. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 91-97.	1.2	387
18	Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of <i>Ficedula</i> flycatchers. Genome Research, 2015, 25, 1656-1665.	2.4	385

#	Article	IF	CITATIONS
19	Multiple Marker Mapping of Quantitative Trait Loci in a Cross Between Outbred Wild Boar and Large White Pigs. Genetics, 1998, 149, 1069-1080.	1.2	361
20	Sex ratio adjustment in relation to paternal attractiveness in a wild bird population Proceedings of the United States of America, 1996, 93, 11723-11728.	3.3	356
21	Microsatellite â€~evolution': directionality or bias?. Nature Genetics, 1995, 11, 360-362.	9.4	342
22	The evolutionary causes and consequences of sex-biased gene expression. Nature Reviews Genetics, 2013, 14, 83-87.	7.7	322
23	Mitochondrial DNA phylogeography and population history of the grey wolf Canis lupus. Molecular Ecology, 1999, 8, 2089-2103.	2.0	314
24	Heterogeneous mutation processes in human microsatellite DNA sequences. Nature Genetics, 2000, 24, 400-402.	9.4	306
25	Genetic basis of fitness differences in natural populations. Nature, 2008, 452, 169-175.	13.7	304
26	A wide-range survey of cross-species microsatellite amplification in birds. Molecular Ecology, 1996, 5, 365-378.	2.0	304
27	Y chromosome conserved anchored tagged sequences (YCATS) for the analysis of mammalian male-specific DNA. Molecular Ecology, 2002, 12, 283-291.	2.0	280
28	Evolutionary stasis: the stable chromosomes of birds. Trends in Ecology and Evolution, 2010, 25, 283-291.	4.2	245
29	Temporal Dynamics of Avian Populations during Pleistocene Revealed by Whole-Genome Sequences. Current Biology, 2015, 25, 1375-1380.	1.8	243
30	Fitness loss and germline mutations in barn swallows breeding in Chernobyl. Nature, 1997, 389, 593-596.	13.7	239
31	Low Frequency of Microsatellites in the Avian Genome. Genome Research, 1997, 7, 471-482.	2.4	238
32	Resolving genetic relationships with microsatellite markers: a parentage testing system for the swallow <i>Hirundo rustica</i> . Molecular Ecology, 1995, 4, 493-498.	2.0	237
33	Sexual selection resulting from extrapair paternity in collared flycatchers. Animal Behaviour, 1999, 57, 285-298.	0.8	233
34	Evolution of the avian sex chromosomes from an ancestral pair of autosomes. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 8147-8152.	3.3	230
35	To what extent do microsatellite markers reflect genomeâ€wide genetic diversity in natural populations?. Molecular Ecology, 2008, 17, 3808-3817.	2.0	230
36	<scp>PSMC</scp> analysis of effective population sizes in molecular ecology and its application to blackâ€andâ€white <i>Ficedula</i> flycatchers. Molecular Ecology, 2016, 25, 1058-1072.	2.0	225

#	Article	IF	CITATIONS
37	The Dynamics of Incomplete Lineage Sorting across the Ancient Adaptive Radiation of Neoavian Birds. PLoS Biology, 2015, 13, e1002224.	2.6	223
38	Faced with inequality: chicken do not have a general dosage compensation of sex-linked genes. BMC Biology, 2007, 5, 40.	1.7	222
39	A highâ€density linkage map enables a secondâ€generation collared flycatcher genome assembly and reveals the patterns of avian recombination rate variation and chromosomal evolution. Molecular Ecology, 2014, 23, 4035-4058.	2.0	220
40	Male–driven evolution of DNA sequences in birds. Nature Genetics, 1997, 17, 182-184.	9.4	216
41	The recombination landscape of the zebra finch <i>Taeniopygia guttata</i> genome. Genome Research, 2010, 20, 485-495.	2.4	212
42	Sex-chromosome evolution: recent progress and the influence of male and female heterogamety. Nature Reviews Genetics, 2011, 12, 157-166.	7.7	204
43	Sexual variation in heritability and genetic correlations of morphological traits in house sparrow (Passer domesticus). Journal of Evolutionary Biology, 2003, 16, 1296-1307.	0.8	201
44	Genomics advances the study of inbreeding depression in the wild. Evolutionary Applications, 2016, 9, 1205-1218.	1.5	200
45	Polymerase-Chain-Reaction (PCR) Analysis of Microsatellites: A New Approach to Studies of Genetic Relationships in Birds. Auk, 1992, 109, 886-895.	0.7	196
46	Evolutionary Strata on the Chicken Z Chromosome: Implications for Sex Chromosome Evolution. Genetics, 2004, 167, 367-376.	1.2	192
47	Directional evolution in germline microsatellite mutations. Nature Genetics, 1996, 13, 391-393.	9.4	190
48	Direct estimate of the rate of germline mutation in a bird. Genome Research, 2016, 26, 1211-1218.	2.4	190
49	Major histocompatibility complex monomorphism and low levels of DNA fingerprinting variability in a reintroduced and rapidly expanding population of beavers Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 8150-8153.	3.3	178
50	Genomics of natural bird populations: a geneâ€based set of reference markers evenly spread across the avian genome. Molecular Ecology, 2008, 17, 964-980.	2.0	174
51	Cloning of highly polymorphic microsatellites in the horse. Animal Genetics, 1992, 23, 133-142.	0.6	168
52	Characteristics, causes and evolutionary consequences of male-biased mutation. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1-10.	1.2	162
53	Sex biases in the mutation rate. Trends in Genetics, 1998, 14, 446-452.	2.9	160
54	Combined use of maternal, paternal and bi-parental genetic markers for the identification of wolf–dog hybrids. Heredity, 2003, 90, 17-24.	1.2	159

#	Article	IF	CITATIONS
55	Male-Biased Mutation Rate and Divergence in Autosomal, Z-Linked and W-Linked Introns of Chicken and Turkey. Molecular Biology and Evolution, 2004, 21, 1538-1547.	3.5	157
56	A primary linkage map of the porcine genome reveals a low rate of genetic recombination Genetics, 1994, 137, 1089-1100.	1.2	155
57	Cattle domestication in the Near East was followed by hybridization with aurochs bulls in Europe. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 2345-2351.	1.2	151
58	Microsatellite evolutiona reciprocal study of repeat lengths at homologous loci in cattle and sheep. Molecular Biology and Evolution, 1997, 14, 854-860.	3.5	150
59	Bottlenecked but long-lived: high genetic diversity retained in white-tailed eagles upon recovery from population decline. Biology Letters, 2006, 2, 316-319.	1.0	149
60	Genomic consequences of intensive inbreeding in an isolated wolf population. Nature Ecology and Evolution, 2018, 2, 124-131.	3.4	146
61	Pleiotropic Constraint Hampers the Resolution of Sexual Antagonism in Vertebrate Gene Expression. American Naturalist, 2008, 171, 35-43.	1.0	143
62	Fast-X on the Z: Rapid evolution of sex-linked genes in birds. Genome Research, 2007, 17, 618-624.	2.4	139
63	Comparison of the chicken and turkey genomes reveals a higher rate of nucleotide divergence on microchromosomes than macrochromosomes. Genome Research, 2005, 15, 120-125.	2.4	138
64	New tools for sex identification and the study of sex allocation in birds. Trends in Ecology and Evolution, 1997, 12, 255-259.	4.2	136
65	Limited number of patrilines in horse domestication. Nature Genetics, 2004, 36, 335-336.	9.4	136
66	Mutation rate variation in the mammalian genome. Current Opinion in Genetics and Development, 2003, 13, 562-568.	1.5	135
67	Comparative genomics and the study of evolution by natural selection. Molecular Ecology, 2008, 17, 4586-4596.	2.0	133
68	Copy number variation, chromosome rearrangement, and their association with recombination during avian evolution. Genome Research, 2010, 20, 503-511.	2.4	133
69	Heterozygosity–fitness correlations in zebra finches: microsatellite markers can be better than their reputation. Molecular Ecology, 2012, 21, 3237-3249.	2.0	133
70	From wild wolf to domestic dog: gene expression changes in the brain. Molecular Brain Research, 2004, 126, 198-206.	2.5	128
71	All dosage compensation is local: Gene-by-gene regulation of sex-biased expression on the chicken Z chromosome. Heredity, 2009, 102, 312-320.	1.2	125
72	Molecular evolution of genes in avian genomes. Genome Biology, 2010, 11, R68.	13.9	125

#	Article	IF	CITATIONS
73	Demographic Divergence History of Pied Flycatcher and Collared Flycatcher Inferred from Whole-Genome Re-sequencing Data. PLoS Genetics, 2013, 9, e1003942.	1.5	124
74	The different levels of genetic diversity in sex chromosomes and autosomes. Trends in Genetics, 2009, 25, 278-284.	2.9	123
75	GENDER AND ENVIRONMENTAL SENSITIVITY IN NESTLING COLLARED FLYCATCHERS. Ecology, 1998, 79, 1939-1948.	1.5	121
76	Genes of domestic mammals augmented by backcrossing with wild ancestors. Trends in Genetics, 2005, 21, 214-218.	2.9	121
77	Evolutionary analysis of the female-specific avian W chromosome. Nature Communications, 2015, 6, 7330.	5.8	121
78	Microsatellite evolution inferred from human- chimpanzee genomic sequence alignments. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8748-8753.	3.3	118
79	Low Levels of Nucleotide Diversity in Mammalian Y Chromosomes. Molecular Biology and Evolution, 2003, 21, 158-163.	3.5	117
80	Insertion-deletion polymorphisms (indels) as genetic markers in natural populations. BMC Genetics, 2008, 9, 8.	2.7	116
81	Ecological and genetic spatial structuring in the Canadian lynx. Nature, 2003, 425, 69-72.	13.7	115
82	Molecular evolutionary genomics of birds. Cytogenetic and Genome Research, 2007, 117, 120-130.	0.6	114
83	Faster-Z Evolution Is Predominantly Due to Genetic Drift. Molecular Biology and Evolution, 2010, 27, 661-670.	3.5	114
84	SNPs in ecological and conservation studies: a test in the Scandinavian wolf population. Molecular Ecology, 2005, 14, 503-511.	2.0	111
85	Sequencing goes 454 and takes largeâ€scale genomics into the wild. Molecular Ecology, 2008, 17, 1629-1631.	2.0	111
86	Prehistoric contacts over the Straits of Gibraltar indicated by genetic analysis of Iberian Bronze Age cattle. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8431-8435.	3.3	109
87	AN EXPERIMENTAL STUDY OF PATERNITY AND TAIL ORNAMENTATION IN THE BARN SWALLOW (<i>HIRUNDO) T</i>	'j E <u>TQ</u> q1 1	l 0.784314 rg
88	Deterministic Mutation Rate Variation in the Human Genome. Genome Research, 2002, 12, 1350-1356.	2.4	108
89	Unraveling the Processes of Microsatellite Evolution Through Analysis of Germ Line Mutations in Barn Swallows Hirundo rustica. Molecular Biology and Evolution, 1998, 15, 1047-1054.	3.5	107
90	Evolution of the avian sex chromosomes and their role in sex determination. Trends in Ecology and Evolution, 2000, 15, 188-192.	4.2	107

#	Article	IF	CITATIONS
91	Genetic variation and population structure in Scandinavian wolverine (Gulo gulo) populations. Molecular Ecology, 2001, 10, 53-63.	2.0	106
92	A comprehensive linkage map of the pig based on a wild pig ―Large White intercross. Animal Genetics, 1996, 27, 255-269.	0.6	105
93	Comparative genomics based on massive parallel transcriptome sequencing reveals patterns of substitution and selection across 10 bird species. Molecular Ecology, 2010, 19, 266-276.	2.0	105
94	Y chromosome haplotyping in Scandinavian wolves (Canis lupus) based on microsatellite markers. Molecular Ecology, 2001, 10, 1959-1966.	2.0	104
95	Comparative mapping reveals extensive linkage conservation—but with gene order rearrangements—between the pig and the human genomes. Genomics, 1995, 25, 682-690.	1.3	102
96	Resolving Evolutionary Relationships in Closely Related Species with Whole-Genome Sequencing Data. Systematic Biology, 2015, 64, 1000-1017.	2.7	102
97	The gene for dominant white color in the pig is closely linked to ALB and PDGFRA on chromosome 8. Genomics, 1992, 14, 965-969.	1.3	101
98	Speciation, introgressive hybridization and nonlinear rate of molecular evolution in flycatchers. Molecular Ecology, 2008, 10, 737-749.	2.0	99
99	Ontogenetic Complexity of Sexual Dimorphism and Sex-Specific Selection. Molecular Biology and Evolution, 2010, 27, 1570-1578.	3.5	99
100	Identification of a mutation in the low density lipoprotein receptor gene associated with recessive familial hypercholesterolemia in swine. American Journal of Medical Genetics Part A, 1998, 76, 379-386.	2.4	98
101	Two centuries of the Scandinavian wolf population: patterns of genetic variability and migration during an era of dramatic decline. Molecular Ecology, 2003, 12, 869-880.	2.0	98
102	Patterns of molecular evolution in avian microsatellites. Molecular Biology and Evolution, 1998, 15, 997-1008.	3.5	97
103	Third Report on Chicken Genes and Chromosomes 2015. Cytogenetic and Genome Research, 2015, 145, 78-179.	0.6	97
104	The Evolutionary Genomics of Birds. Annual Review of Ecology, Evolution, and Systematics, 2013, 44, 239-259.	3.8	96
105	Mutation rates at porcine microsatellite loci. Mammalian Genome, 1995, 6, 376-377.	1.0	95
106	Genetical and physical assignments of equine microsatellites—first integration of anchored markers in horse genome mapping. Mammalian Genome, 1997, 8, 267-273.	1.0	95
107	Nonlinear Dynamics of Nonsynonymous (dN) and Synonymous (dS) Substitution Rates Affects Inference of Selection. Genome Biology and Evolution, 2009, 1, 308-319.	1.1	95
108	Genetic Mapping in a Natural Population of Collared Flycatchers (Ficedula albicollis): Conserved Synteny but Gene Order Rearrangements on the Avian Z Chromosome. Genetics, 2006, 174, 377-386.	1.2	93

#	Article	IF	CITATIONS
109	Assignment of 20 Microsatellite Markers to the Porcine Linkage Map. Genomics, 1993, 16, 431-439.	1.3	91
110	Strong Regional Biases in Nucleotide Substitution in the Chicken Genome. Molecular Biology and Evolution, 2006, 23, 1203-1216.	3.5	91
111	Genome-wide analysis of microsatellite polymorphism in chicken circumventing the ascertainment bias. Genome Research, 2008, 18, 881-887.	2.4	90
112	Speciation in <i>Ficedula</i> flycatchers. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1841-1852.	1.8	89
113	A Gene-Based Genetic Linkage Map of the Collared Flycatcher (<i>Ficedula albicollis</i>) Reveals Extensive Synteny and Gene-Order Conservation During 100 Million Years of Avian Evolution. Genetics, 2008, 179, 1479-1495.	1.2	88
114	The Chicken (<i>Gallus gallus</i>) Z Chromosome Contains at Least Three Nonlinear Evolutionary Strata. Genetics, 2008, 180, 1131-1136.	1.2	88
115	MHC class II genes in European wolves: a comparison with dogs. Immunogenetics, 2002, 54, 490-500.	1.2	87
116	Colonization History and Noninvasive Monitoring of a Reestablished Wolverine Population. Conservation Biology, 2004, 18, 676-688.	2.4	87
117	Wholeâ€genome patterns of linkage disequilibrium across flycatcher populations clarify the causes and consequences of fineâ€scale recombination rate variation in birds. Molecular Ecology, 2017, 26, 4158-4172.	2.0	87
118	LIFE HISTORY AND THE MALE MUTATION BIAS. Evolution; International Journal of Organic Evolution, 2003, 57, 2398.	1.1	85
119	Lifetime reproductive success in relation to morphology in the house sparrow Passer domesticus. Journal of Animal Ecology, 2004, 73, 599-611.	1.3	85
120	DNA-Based Individual and Sex Identification from Wolverine (Gulo Gulo) Faeces and Urine. Conservation Genetics, 2004, 5, 405-410.	0.8	85
121	High-Resolution Mapping of Crossover and Non-crossover Recombination Events by Whole-Genome Re-sequencing of an Avian Pedigree. PLoS Genetics, 2016, 12, e1006044.	1.5	85
122	DNA typing of museum birds. Nature, 1991, 354, 113-113.	13.7	84
123	Dynamic Evolution of Base Composition: Causes and Consequences in Avian Phylogenomics. Molecular Biology and Evolution, 2011, 28, 2197-2210.	3.5	84
124	Parentage testing and linkage analysis in the horse using a set of highly polymorphic microsatellites. Animal Genetics, 1994, 25, 19-23.	0.6	83
125	The genetical history of an isolated population of the endangered grey wolf Canis lupus : a study of nuclear and mitochondrial polymorphisms. Philosophical Transactions of the Royal Society B: Biological Sciences, 1996, 351, 1661-1669.	1.8	82
126	Inbreeding and Relatedness in Scandinavian Grey Wolves Canis Lupus. Hereditas, 2004, 130, 239-244.	0.5	80

#	Article	IF	CITATIONS
127	The unique genomic properties of sex-biased genes: Insights from avian microarray data. BMC Genomics, 2008, 9, 148.	1.2	79
128	Microsatellite evolution: polarity of substitutions within repeats and neutrality of flanking sequences. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 825-833.	1.2	77
129	EVALUATION OF d2, A MICROSATELLITE MEASURE OF INBREEDING AND OUTBREEDING, IN WOLVES WITH A KNOWN PEDIGREE. Evolution; International Journal of Organic Evolution, 2001, 55, 1256-1260.	1.1	77
130	Inferring Individual Inbreeding and Demographic History from Segments of Identity by Descent in <i>Ficedula</i> Flycatcher Genome Sequences. Genetics, 2017, 205, 1319-1334.	1.2	77
131	Heterogeneity in the rate and pattern of germline mutation at individual microsatellite loci. Nucleic Acids Research, 2002, 30, 1997-2003.	6.5	76
132	Insertion Events of CR1 Retrotransposable Elements Elucidate the Phylogenetic Branching Order in Galliform Birds. Molecular Biology and Evolution, 2006, 24, 338-347.	3.5	76
133	Evidence for GC-biased gene conversion as a driver of between-lineage differences in avian base composition. Genome Biology, 2014, 15, 549.	3.8	76
134	Compositional Evolution of Noncoding DNA in the Human and Chimpanzee Genomes. Molecular Biology and Evolution, 2003, 20, 278-286.	3.5	75
135	Life History Traits, Protein Evolution, and the Nearly Neutral Theory in Amniotes. Molecular Biology and Evolution, 2016, 33, 1517-1527.	3.5	75
136	Genomewide patterns of variation in genetic diversity are shared among populations, species and higherâ€order taxa. Molecular Ecology, 2017, 26, 4284-4295.	2.0	75
137	QUANTITATIVE GENETICS OF SEXUAL SIZE DIMORPHISM IN THE COLLARED FLYCATCHER, <i>FICEDULA ALBICOLLIS </i> . Evolution; International Journal of Organic Evolution, 1998, 52, 870-876.	1.1	74
138	Chicken W: A genetically uniform chromosome in a highly variable genome. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15967-15969.	3.3	74
139	No evidence for adjustment of sex allocation in relation to paternal ornamentation and paternity in barn swallows. Molecular Ecology, 1999, 8, 399-406.	2.0	72
140	Rapid Evolution of Female-Biased, but Not Male-Biased, Genes Expressed in the Avian Brain. Molecular Biology and Evolution, 2007, 24, 2698-2706.	3.5	72
141	Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment. GigaScience, 2014, 3, 27.	3.3	72
142	Phylogenomic analyses data of the avian phylogenomics project. GigaScience, 2015, 4, 4.	3.3	72
143	Substitution rate variation at human CpG sites correlates with non-CpG divergence, methylation level and GC content. Genome Biology, 2011, 12, R58.	13.9	71
144	Reconstruction of gross avian genome structure, organization and evolution suggests that the chicken lineage most closely resembles the dinosaur avian ancestor. BMC Genomics, 2014, 15, 1060.	1.2	71

#	Article	IF	CITATIONS
145	The avian genome uncovered. Trends in Ecology and Evolution, 2005, 20, 180-186.	4.2	70
146	Parentage testing and linkage analysis in the horse using a set of highly polymorphic microsatellites. Animal Genetics, 1994, 25, 19-23.	0.6	70
147	CCâ€biased gene conversion links the recombination landscape and demography to genomic base composition. BioEssays, 2015, 37, 1317-1326.	1.2	70
148	New Microsatellites from the Pied Flycatcher Ficedula Hypoleuca and the Swallow Hirundo Rustica Genomes. Hereditas, 2004, 124, 281-284.	0.5	69
149	Recombination Drives Vertebrate Genome Contraction. PLoS Genetics, 2012, 8, e1002680.	1.5	69
150	SEX-LINKAGE OF SEXUALLY ANTAGONISTIC GENES IS PREDICTED BY FEMALE, BUT NOT MALE, EFFECTS IN BIRDS. Evolution; International Journal of Organic Evolution, 2009, 63, 1464-1472.	1.1	67
151	Dosage compensation: do birds do it as well?. Trends in Genetics, 2002, 18, 25-28.	2.9	66
152	Title is missing!. Conservation Genetics, 2002, 3, 97-111.	0.8	66
153	Reduced Variation on the Chicken Z Chromosome. Genetics, 2004, 167, 377-385.	1.2	66
154	Wholeâ€genome resequencing of extreme phenotypes in collared flycatchers highlights the difficulty of detecting quantitative trait loci in natural populations. Molecular Ecology Resources, 2016, 16, 727-741.	2.2	66
155	Cryptic population structure in a large, mobile mammalian predator: the Scandinavian lynx. Molecular Ecology, 2003, 12, 2623-2633.	2.0	65
156	Gene Conversion Drives the Evolution of HINTW, an Ampliconic Gene on the Female-Specific Avian W Chromosome. Molecular Biology and Evolution, 2005, 22, 1992-1999.	3.5	65
157	Wolf or dog? Genetic identification of predators from saliva collected around bite wounds on prey. Conservation Genetics, 2008, 9, 1275-1279.	0.8	65
158	Sexual conflict over fertilizations: female bluethroats escape male paternity guards. Behavioral Ecology and Sociobiology, 1998, 43, 401-408.	0.6	64
159	Male-Driven Biased Gene Conversion Governs the Evolution of Base Composition in Human Alu Repeats. Molecular Biology and Evolution, 2005, 22, 1468-1474.	3.5	64
160	Sex ratio and fledging success of supplementary-fed Tengmalm's owl broods. Molecular Ecology, 2000, 9, 187-192.	2.0	63
161	Antagonistic natural selection revealed by molecular sex identification of nestling collared flycatchers. Molecular Ecology, 1997, 6, 1167-1175.	2.0	62
162	Levels of linkage disequilibrium in a wild bird population. Biology Letters, 2006, 2, 435-438.	1.0	62

#	Article	IF	CITATIONS
163	Are sex-biased genes more dispensable?. Biology Letters, 2009, 5, 409-412.	1.0	62
164	Early Mesozoic Coexistence of Amniotes and Hepadnaviridae. PLoS Genetics, 2014, 10, e1004559.	1.5	61
165	NONRANDOM DISTRIBUTION OF GENES WITH SEX-BIASED EXPRESSION IN THE CHICKEN GENOME. Evolution; International Journal of Organic Evolution, 2006, 60, 1945-1951.	1.1	60
166	Unequal Contribution of Sexes in the Origin of Dog Breeds. Genetics, 2006, 172, 1121-1128.	1.2	60
167	Transcriptome Sequencing Reveals the Character of Incomplete Dosage Compensation across Multiple Tissues in Flycatchers. Genome Biology and Evolution, 2013, 5, 1555-1566.	1.1	59
168	Recombination Rate Variation Modulates Gene Sequence Evolution Mainly via GC-Biased Gene Conversion, Not Hill–Robertson Interference, in an Avian System. Molecular Biology and Evolution, 2016, 33, 216-227.	3.5	59
169	Abundant recent activity of retrovirusâ€like retrotransposons within and among flycatcher species implies a rich source of structural variation in songbird genomes. Molecular Ecology, 2018, 27, 99-111.	2.0	59
170	Molecular Evolution of the Avian <i>CHD1</i> Genes on the Z and W Sex Chromosomes. Genetics, 2000, 155, 1903-1912.	1.2	59
171	THE GENOMIC SIGNATURE OF SEXUAL SELECTION IN THE GENETIC DIVERSITY OF THE SEX CHROMOSOMES AND AUTOSOMES. Evolution; International Journal of Organic Evolution, 2012, 66, 2138-2149.	1.1	58
172	Estimation of linkage disequilibrium and interspecific gene flow in <i><scp>F</scp>icedula</i> flycatchers by a newly developed 50k singleâ€nucleotide polymorphism array. Molecular Ecology Resources, 2014, 14, 1248-1260.	2.2	58
173	A guide to the genomics of ecological speciation in natural animal populations. Ecology Letters, 2011, 14, 9-18.	3.0	57
174	Divergence in gene expression within and between two closely related flycatcher species. Molecular Ecology, 2016, 25, 2015-2028.	2.0	57
175	Ancient DNA reveals traces of Iberian Neolithic and Bronze Age lineages in modern Iberian horses. Molecular Ecology, 2010, 19, 64-78.	2.0	56
176	Evidence for turnover of functional noncoding DNA in mammalian genome evolution. Genomics, 2004, 84, 806-813.	1.3	55
177	Genomic evidence for a large-Z effect. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 361-366.	1.2	55
178	Patterns of sequencing coverage bias revealed by ultra-deep sequencing of vertebrate mitochondria. BMC Genomics, 2014, 15, 467.	1.2	55
179	Increasing the power of genome wide association studies in natural populations using repeated measures – evaluation and implementation. Methods in Ecology and Evolution, 2016, 7, 792-799.	2.2	55
180	Experimentally reduced paternity affects paternal effort and reproductive success in pied flycatchers. Animal Behaviour, 1998, 55, 319-329.	0.8	54

#	Article	IF	CITATIONS
181	Fast Accumulation of Nonsynonymous Mutations on the Female-Specific W Chromosome in Birds. Journal of Molecular Evolution, 2006, 62, 66-72.	0.8	54
182	Parallel divergence and degradation of the avian W sex chromosome. Trends in Ecology and Evolution, 2007, 22, 389-391.	4.2	54
183	Evolutionary Consequences of DNA Methylation on the GC Content in Vertebrate Genomes. G3: Genes, Genomes, Genetics, 2015, 5, 441-447.	0.8	54
184	A Primary Male Autosomal Linkage Map of the Horse Genome. Genome Research, 1998, 8, 951-966.	2.4	53
185	K r /K c but not d N /d S correlates positively with body mass in birds, raising implications for inferring lineage-specific selection. Genome Biology, 2014, 15, 542.	3.8	53
186	Limited polymorphism at major histocompatibility complex (MHC) loci in the Swedish moose A. alces. Molecular Ecology, 1996, 5, 3-9.	2.0	52
187	LIFE HISTORY AND THE MALE MUTATION BIAS. Evolution; International Journal of Organic Evolution, 2003, 57, 2398-2406.	1.1	52
188	Contrasting Levels of Nucleotide Diversity on the Avian Z and W Sex Chromosomes. Molecular Biology and Evolution, 2001, 18, 2010-2016.	3.5	51
189	Natural selection in avian protein-coding genes expressed in brain. Molecular Ecology, 2008, 17, 3008-3017.	2.0	51
190	Large-scale noninvasive genetic monitoring of wolverines using scats reveals density dependent adult survival. Biological Conservation, 2010, 143, 113-120.	1.9	51
191	Sexâ€biased gene expression, sexual antagonism and levels of genetic diversity in the collared flycatcher (<i>Ficedula albicollis</i>) genome. Molecular Ecology, 2018, 27, 3572-3581.	2.0	51
192	Multiple and Independent Cessation of Recombination Between Avian Sex Chromosomes. Genetics, 2001, 158, 325-331.	1.2	51
193	Handicapped males and extrapair paternity in pied flycatchers: a study using microsatellite markers. Molecular Ecology, 1995, 4, 739-744.	2.0	50
194	QTL LINKAGE MAPPING OF ZEBRA FINCH BEAK COLOR SHOWS AN OLIGOGENIC CONTROL OF A SEXUALLY SELECTED TRAIT. Evolution; International Journal of Organic Evolution, 2012, 66, 18-30.	1.1	50
195	Sampling strategies for species trees: The effects on phylogenetic inference of the number of genes, number of individuals, and whether loci are mitochondrial, sex-linked, or autosomal. Molecular Phylogenetics and Evolution, 2013, 67, 358-366.	1.2	50
196	Covariation in levels of nucleotide diversity in homologous regions of the avian genome long after completion of lineage sorting. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162756.	1.2	50
197	Male-Biased Mutation Rates Revealed from Z and W Chromosome-Linked ATP Synthase α-Subunit (ATP5A1) Sequences in Birds. Journal of Molecular Evolution, 2000, 50, 443-447.	0.8	49
198	Genome sequencing and conservation genomics in the Scandinavian wolverine population. Conservation Biology, 2018, 32, 1301-1312.	2.4	49

#	Article	IF	CITATIONS
199	Cloning and Characterization of Highly Polymorphic Porcine Microsatellites. Journal of Heredity, 1992, 83, 196-198.	1.0	48
200	Experimental mate switching in pied flycatchers: male copulatory access and fertilization success. Animal Behaviour, 1997, 53, 1225-1232.	0.8	48
201	Fat loads and estimated flightâ€ranges in four <i>Sylvia</i> species analysed during autumn migration at Gotland, Southâ€East Sweden. Ringing and Migration, 1992, 13, 1-12.	0.2	47
202	A temporal analysis shows major histocompatibility complex loci in the Scandinavian wolf population are consistent with neutral evolution. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 2283-2291.	1.2	47
203	Breeding synchrony and paternity in the barn swallow (Hirundo rustica). Behavioral Ecology and Sociobiology, 1999, 45, 211-218.	0.6	46
204	The Genomic Landscape of Short Insertion and Deletion Polymorphisms in the Chicken (Gallus gallus) Genome: A High Frequency of Deletions in Tandem Duplicates. Genetics, 2007, 176, 1691-1701.	1.2	45
205	Genome-wide association mapping in a wild avian population identifies a link between genetic and phenotypic variation in a life-history trait. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150156.	1.2	45
206	Quantitative Mass Spectrometry Reveals Partial Translational Regulation for Dosage Compensation in Chicken. Molecular Biology and Evolution, 2015, 32, 2716-2725.	3.5	45
207	Hens, cocks and avian sex determination. EMBO Reports, 2001, 2, 192-196.	2.0	44
208	Genomic identification and characterization of the pseudoautosomal region in highly differentiated avian sex chromosomes. Nature Communications, 2014, 5, 5448.	5.8	44
209	Insights into the genetic architecture of morphological traits in two passerine bird species. Heredity, 2017, 119, 197-205.	1.2	44
210	Lack of Dosage Compensation Accompanies the Arrested Stage of Sex Chromosome Evolution in Ostriches. Molecular Biology and Evolution, 2013, 30, 806-810.	3.5	42
211	Clonal inheritance of avian mitochondrial DNA. Nature, 2001, 413, 37-38.	13.7	41
212	Twisted Signatures of GC-Biased Gene Conversion Embedded in an Evolutionary Stable Karyotype. Molecular Biology and Evolution, 2013, 30, 1700-1712.	3.5	41
213	Widespread hybridization between the Greater Spotted Eagle Aquila clanga and the Lesser Spotted Eagle Aquila pomarina (Aves: Accipitriformes) in Europe. Biological Journal of the Linnean Society, 0, 100, 725-736.	0.7	39
214	Expansion of the pig comparative map by expressed sequence tags (EST) mapping. Mammalian Genome, 1997, 8, 907-912.	1.0	38
215	A Low Rate of Simultaneous Double-Nucleotide Mutations in Primates. Molecular Biology and Evolution, 2003, 20, 47-53.	3.5	38
216	Emergence of male-biased genes on the chicken Z-chromosome: Sex-chromosome contrasts between male and female heterogametic systems: Figure 1 Genome Research, 2011, 21, 2082-2086.	2.4	38

#	Article	IF	CITATIONS
217	Genomic distribution and estimation of nucleotide diversity in natural populations: perspectives from the collared flycatcher (<i>Ficedula albicollis</i>) genome. Molecular Ecology Resources, 2017, 17, 586-597.	2.2	38
218	Autumn migration speed in Scandinavian Bluethroats <i>Luscinia s. svecica</i> . Ringing and Migration, 1990, 11, 121-131.	0.2	37
219	A Sexually Selected Paradox in the Pied Flycatcher: Attractive Males Are Cuckolded. Auk, 1997, 114, 112-115.	0.7	37
220	A SELECTION MODEL OF MOLECULAR EVOLUTION INCORPORATING THE EFFECTIVE POPULATION SIZE. Evolution; International Journal of Organic Evolution, 2009, 63, 301-305.	1.1	37
221	GC-biased gene conversion conceals the prediction of the nearly neutral theory in avian genomes. Genome Biology, 2019, 20, 5.	3.8	37
222	Obtaining mtDNA genomes from next-generation transcriptome sequencing: A case study on the basal Passerida (Aves: Passeriformes) phylogeny. Molecular Phylogenetics and Evolution, 2010, 57, 466-470.	1.2	36
223	Gene Expression, Synteny, and Local Similarity in Human Noncoding Mutation Rates. Molecular Biology and Evolution, 2004, 21, 1820-1830.	3.5	35
224	A HIGH-DENSITY SCAN OF THE Z CHROMOSOME IN FICEDULA FLYCATCHERS REVEALS CANDIDATE LOCI FOR DIVERSIFYING SELECTION. Evolution; International Journal of Organic Evolution, 2010, 64, 3461-3475.	1.1	35
225	A Physically Anchored Linkage Map of Pig Chromosome 1 Uncovers Sex- and Position-Specific Recombination Rates. Genomics, 1994, 24, 342-350.	1.3	34
226	Old but Not (So) Degenerated—Slow Evolution of Largely Homomorphic Sex Chromosomes in Ratites. Molecular Biology and Evolution, 2014, 31, 1444-1453.	3.5	34
227	Nonrandom distribution of genes with sex-biased expression in the chicken genome. Evolution; International Journal of Organic Evolution, 2006, 60, 1945-51.	1.1	34
228	Linkage mapping of the apolipoprotein A-I (APOA1) gene to pig Chromosome 9. Mammalian Genome, 1994, 5, 58-59.	1.0	33
229	Sex-Specific Mutation Rates in Salmonid Fish. Journal of Molecular Evolution, 2003, 56, 458-463.	0.8	33
230	Understanding the phylogeographic patterns of European hedgehogs, Erinaceus concolor and E. europaeus using the MHC. Heredity, 2005, 95, 84-90.	1.2	33
231	Integrating the porcine physical and linkage map using cosmidâ€derived markers. Animal Genetics, 1994, 25, 155-164.	0.6	33
232	Segregation distortion in chicken and the evolutionary consequences of female meiotic drive in birds. Heredity, 2010, 105, 290-298.	1.2	33
233	Genotypeâ€free estimation of allele frequencies reduces bias and improves demographic inference from RADSeq data. Molecular Ecology Resources, 2019, 19, 586-596.	2.2	33
234	The Relationship Between Microsatellite Polymorphism and Recombination Hot Spots in the Human Genome. Molecular Biology and Evolution, 2008, 25, 2579-2587.	3.5	32

#	Article	IF	CITATIONS
235	Biased Inference of Selection Due to GC-Biased Gene Conversion and the Rate of Protein Evolution in Flycatchers When Accounting for It. Molecular Biology and Evolution, 2018, 35, 2475-2486.	3.5	32
236	How Linked Selection Shapes the Diversity Landscape in Ficedula Flycatchers. Genetics, 2019, 212, 277-285.	1.2	32
237	Parentage testing and linkage analysis in the horse using a set of highly polymorphic microsatellites. Animal Genetics, 1994, 25, 19-23.	0.6	32
238	Variable SINE 3? poly(A) sequences: an abundant class of genetic markers in the pig genome. Mammalian Genome, 1993, 4, 429-434.	1.0	31
239	Isolation and characterization of polymorphic microsatellite loci in the common frog,Rana temporaria. Molecular Ecology, 2000, 9, 1938-1939.	2.0	31
240	Population genomics of the inbred Scandinavian wolf. Molecular Ecology, 2009, 18, 1341-1351.	2.0	31
241	Significant Selective Constraint at 4-Fold Degenerate Sites in the Avian Genome and Its Consequence for Detection of Positive Selection. Genome Biology and Evolution, 2011, 3, 1381-1389.	1.1	31
242	Compensatory immigration counteracts contrasting conservation strategies of wolverines (Gulo) Tj ETQq0 0 0 rg	;BT /Overl 1.9	ock 10 Tf 50
243	Conserved Synteny between Pig Chromosome 8 and Human Chromosome 4 but Rearranged and Distorted Linkage Maps. Genomics, 1993, 17, 599-603.	1.3	30
244	An extensive candidate gene approach to speciation: diversity, divergence and linkage disequilibrium in candidate pigmentation genes across the European crow hybrid zone. Heredity, 2013, 111, 467-473.	1.2	30
245	Genome-wide analysis in chicken reveals that local levels of genetic diversity are mainly governed by the rate of recombination. BMC Genomics, 2013, 14, 86.	1.2	30
246	DNA fingerprinting in horses using a simple (TG) _n probe and its application to population comparisons. Animal Genetics, 1992, 23, 1-9.	0.6	29
247	Strong association between polymorphisms in an intronic microsatellite and in the coding sequence of the <i>BoLAâ€DKB3</i> gene: implications for microâ€satellite stability and PCRâ€based <i>DRB3</i> typing. Animal Genetics, 1993, 24, 269-275.	0.6	29
248	Adaptive Molecular Evolution of HINTW, a Female-Specific Gene in Birds. Molecular Biology and Evolution, 2003, 21, 249-254.	3.5	28
249	Trisomy and triploidy are sources of embryo mortality in the zebra finch. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2655-2660.	1.2	28
250	The Extension Coat Color Locus and the Loci for Blood Group O and Tyrosine Aminotransferase Are on Pig Chromosome 6. Journal of Heredity, 1996, 87, 272-276.	1.0	27
251	Avian genome evolution: insights from a linkage map of the blue tit (Cyanistes caeruleus). Heredity, 2010, 104, 67-78.	1.2	27
252	Quantification of Adaptive Evolution of Genes Expressed in Avian Brain and the Population Size Effect on the Efficacy of Selection. Molecular Biology and Evolution, 2009, 26, 1073-1079.	3.5	25

#	Article	IF	CITATIONS
253	<i>In situ</i> hybridization mapping and restriction fragment length polymorphism analysis of the porcine albumin (ALB) and transferrin (TF) genes . Animal Genetics, 1993, 24, 85-90.	0.6	25
254	Parallelism in genomic landscapes of differentiation, conserved genomic features and the role of linked selection. Journal of Evolutionary Biology, 2017, 30, 1516-1518.	0.8	25
255	Positive diversifying selection in avian Mx genes. Immunogenetics, 2008, 60, 689-697.	1.2	24
256	Identification of conservation units in the European Mergus merganser based on nuclear and mitochondrial DNA markers. Conservation Genetics, 2009, 10, 87-99.	0.8	24
257	A Genetic Map of Ostrich Z Chromosome and the Role of Inversions in Avian Sex Chromosome Evolution. Genome Biology and Evolution, 2018, 10, 2049-2060.	1.1	24
258	QTL linkage mapping of wing length in zebra finch using genomeâ€wide single nucleotide polymorphisms markers. Molecular Ecology, 2012, 21, 329-339.	2.0	23
259	Individual variation in microsatellite mutation rate in barn swallows. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2004, 545, 73-80.	0.4	22
260	Abundant (A) _n ·(T) _n mononucleotide repeats in the pig genome: linkage mapping of the porcine APOB, FSA, ALOX12, PEPN and RLN loci. Animal Genetics, 1993, 24, 367-372.	0.6	22
261	Noninvasive genetic sampling reveals intrasex territoriality in wolverines. Ecology and Evolution, 2016, 6, 1527-1536.	0.8	22
262	Bayesian Inference of Allele-Specific Gene Expression Indicates Abundant Cis-Regulatory Variation in Natural Flycatcher Populations. Genome Biology and Evolution, 2017, 9, 1266-1279.	1.1	22
263	Genetic Analysis of the Gene for Porcine Submaxillary Gland Mucin: Physical Assignment of the MUC and Interferon Î ³ Genes to Chromosome 5. Journal of Heredity, 1993, 84, 259-262.	1.0	21
264	Microsatellite evolution: a battle between replication slippage and point mutation. Trends in Genetics, 2002, 18, 70.	2.9	21
265	Substitution Rate Heterogeneity and the Male Mutation Bias. Journal of Molecular Evolution, 2006, 62, 226-233.	0.8	21
266	QTL and quantitative genetic analysis of beak morphology reveals patterns of standing genetic variation in an Estrildid finch. Molecular Ecology, 2012, 21, 3704-3717.	2.0	21
267	Is the Rate of Insertion and Deletion Mutation Male Biased?: Molecular Evolutionary Analysis of Avian and Primate Sex Chromosome Sequences. Genetics, 2003, 164, 259-268.	1.2	21
268	Mismatch repair and mutational bias in microsatellite DNA. Trends in Genetics, 2002, 18, 552.	2.9	20
269	Mystery of the mutagenic male. Nature, 2002, 420, 365-366.	13.7	20
270	Paternity and mating system in wolverines <i>Gulo gulo</i> . Wildlife Biology, 2007, 13, 13-30.	0.6	20

#	Article	IF	CITATIONS
271	Inferring the demographic history of European Ficedula flycatcher populations. BMC Evolutionary Biology, 2013, 13, 2.	3.2	20
272	Do Avian Mitochondria Recombine?. Journal of Molecular Evolution, 2004, 58, 163-167.	0.8	19
273	Genetic identification of immigrants to the Scandinavian wolf population. Conservation Genetics, 2006, 7, 225-230.	0.8	19
274	Multiple restriction fragment length polymorphisms in the porcine calcium release channel gene (CRC): assignment to the halothane (HAL) linkage group. Animal Genetics, 1992, 23, 257-262.	0.6	19
275	Sex bias in gene expression is not the same as dosage compensation. Heredity, 2009, 103, 434-434.	1.2	19
276	Natural selection beyond genes: Identification and analyses of evolutionarily conserved elements in the genome of the collared flycatcher (<i>Ficedula albicollis</i>). Molecular Ecology, 2018, 27, 476-492.	2.0	19
277	Wholeâ€genome analyses provide no evidence for dog introgression in Fennoscandian wolf populations. Evolutionary Applications, 2021, 14, 721-734.	1.5	19
278	Human mutation—blame (mostly) men. Nature Genetics, 2002, 31, 9-10.	9.4	18
279	Microsatellite genotyping of DNA isolated from claws left on tanned carnivore hides. International Journal of Legal Medicine, 2005, 119, 370-373.	1.2	18
280	Adaptive Evolution of Gamete-Recognition Proteins in Birds. Journal of Molecular Evolution, 2008, 67, 488-496.	0.8	18
281	Association mapping of morphological traits in wild and captive zebra finches: reliable within, but not between populations. Molecular Ecology, 2017, 26, 1285-1305.	2.0	18
282	Positive selection plays a major role in shaping signatures of differentiation across the genomic landscape of two independent <i>Ficedula</i> flycatcher species pairs*. Evolution; International Journal of Organic Evolution, 2021, 75, 2179-2196.	1.1	18
283	DNA-based monitoring of two newly founded Scandinavian wolverine populations. Conservation Genetics, 2007, 8, 843-852.	0.8	17
284	Sex Chromosomes: Platypus Genome Suggests a Recent Origin for the Human X. Current Biology, 2008, 18, R557-R559.	1.8	17
285	Genomic inference of contemporary effective population size in a large island population of collared flycatchers (<i>Ficedula albicollis</i>). Molecular Ecology, 2021, 30, 3965-3973.	2.0	17
286	In situ hybridization mapping of the growth hormone receptor (GHR) gene assigns a linkage group (C9,) Tj ETQqC	0 0 0 rgBT	/Qyerlock 10
287	A test of the multiplex pre-amplification approach in microsatellite genotyping of wolverine faecal DNA. Conservation Genetics, 2006, 7, 289-293.	0.8	16

A large linkage group on pig chromosome 7 including the MHC class I, class II (DQB), and class III (TNFB) genes. Immunogenetics, 1993, 38, 363-6.

#	Article	IF	CITATIONS
289	Linkage maps of porcine Chromosomes 3, 6, and 9 based on 31 polymorphic markers. Mammalian Genome, 1994, 5, 785-790.	1.0	15
290	Genetic Structure and Variability of White-Backed Woodpecker (Dendrocopos Leucotos) Populations in Northern Europe. Hereditas, 2004, 130, 291-299.	0.5	15
291	Mapping of 13 horse genes by fluorescence in-situ hybridization (FISH) and somatic cell hybrid analysis. Chromosome Research, 2001, 9, 53-59.	1.0	14
292	The dog has its day. Nature, 2005, 438, 745-746.	13.7	14
293	The evolutionary history of grey wolf Y chromosomes. Molecular Ecology, 2019, 28, 2173-2191.	2.0	14
294	DNA fingerprinting in horses using a simple (TG)n probe and its application to population comparisons. Animal Genetics, 1992, 23, 1-9.	0.6	14
295	No evidence for Z-chromosome rearrangements between the pied flycatcher and the collared flycatcher as judged by gene-based comparative genetic maps. Molecular Ecology, 2010, 19, 3394-3405.	2.0	13
296	Tissue-specific patterns of regulatory changes underlying gene expression differences among <i>Ficedula</i> flycatchers and their naturally occurring F ₁ hybrids. Genome Research, 2020, 30, 1727-1739.	2.4	13
297	Recent introgression between Taiga Bean Goose and Tundra Bean Goose results in a largely homogeneous landscape of genetic differentiation. Heredity, 2020, 125, 73-84.	1.2	13
298	Sex ratio and age structure of nomadic Tengmalm's owls: a molecular approach. Journal of Avian Biology, 2002, 33, 107-110.	0.6	12
299	NONRANDOM DISTRIBUTION OF GENES WITH SEX-BIASED EXPRESSION IN THE CHICKEN GENOME. Evolution; International Journal of Organic Evolution, 2006, 60, 1945.	1.1	12
300	Conservation of Neutral Substitution Rate and Substitutional Asymmetries in Mammalian Genes. Genome Biology and Evolution, 2010, 2, 19-28.	1.1	12
301	Footprints of adaptive evolution revealed by whole Z chromosomes haplotypes in flycatchers. Molecular Ecology, 2019, 28, 2290-2304.	2.0	12
302	Levels of polymorphism on the sex-limited chromosome: a clue to Y from W?. BioEssays, 2003, 25, 163-167.	1.2	11
303	A prezygotic transmission distorter acting equally in female and male zebra finches <i>Taeniopygia guttata</i> . Molecular Ecology, 2015, 24, 3846-3859.	2.0	11
304	Genetic variation at the growth hormone locus in a wild pig intercross; test of association to phenotypic traits and linkage to the blood group D locus. Theoretical and Applied Genetics, 1995, 91-91, 1074-1077.	1.8	9
305	Single-Molecule Analysis of the Hypermutable Tetranucleotide Repeat Locus D21S1245 Through Sperm Genotyping: A Heterogeneous Pattern of Mutation but no Clear Male Age Effect. Molecular Biology and Evolution, 2003, 21, 58-64.	3.5	9
306	Evolution: Natural Selection in the Evolution of Humans and Chimps. Current Biology, 2005, 15, R919-R922.	1.8	9

#	ARTICLE	IF	CITATIONS
307	Whole-genome resequencing of temporally stratified samples reveals substantial loss of haplotype diversity in the highly inbred Scandinavian wolf population. Genome Research, 2022, 32, 449-458.	2.4	8
308	Physical anchorage and orientation of equine linkage groups by FISH mapping BAC clones containing microsatellite markers. Animal Genetics, 2001, 32, 37-39.	0.6	7
309	Is genetic diversity really higher in large populations?. Journal of Biology, 2009, 8, 41.	2.7	7
310	Potential for increased connectivity between differentiated wolverine populations. Biological Conservation, 2022, 272, 109601.	1.9	7
311	Evolutionary Genomics: A Dinosaur's View of Genome-Size Evolution. Current Biology, 2007, 17, R470-R472.	1.8	6
312	Five equine dinucleotide microsatellite loci HTG17 , HTG20 , HTG21 , HTG28 and HTG31. Animal Genetics, 1999, 30, 70-71.	0.6	6
313	Filling the gaps in the porcine linkage map: isolation of microsatellites from chromosome 18 using flow sorting and SINE-PCR. Cytogenetic and Genome Research, 1995, 71, 370-373.	0.6	5
314	Evolutionary Constraint in Flanking Regions of Avian Genes. Molecular Biology and Evolution, 2011, 28, 2481-2489.	3.5	5
315	DNA Polymorphism in the Moose (Alces alces) Revealed by the Polynucleotide Probe (TC)n. Journal of Heredity, 1991, 82, 429-431.	1.0	3
316	Sex Determination: Two Copies for One Cock. Current Biology, 2009, 19, R909-R910.	1.8	3
317	Mapping trait loci by crossbreeding genetically divergent populations of domestic animals. Animal Biotechnology, 1994, 5, 225-231.	0.7	2
318	DNA fingerprinting with the human 33.6 minisatellite probe identifies sex in beavers Castor fiber. Molecular Ecology, 1994, 3, 273-274.	2.0	2
319	The singing genome. Heredity, 2011, 106, 533-534.	1.2	1
320	Identification of a mutation in the low density lipoprotein receptor gene associated with recessive familial hypercholesterolemia in swine. , 1998, 76, 379.		1
321	Major population splits coincide with episodes of rapid climate change in a forest-dependent bird. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211066.	1.2	1
322	DNA fingerprinting in horses using a simple (TG) _n probe and its application to population comparisons. Animal Genetics, 1992, 23, 1-9.	0.6	0