
Anthi Ranella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4805843/publications.pdf

Version: 2024-02-01

Δητηι Ρανείια

#	Article	IF	CITATIONS
1	How the Physicochemical Properties of Manufactured Nanomaterials Affect Their Performance in Dispersion and Their Applications in Biomedicine: A Review. Nanomaterials, 2022, 12, 552.	4.1	33
2	Fabrication of Biomimetic 2D Nanostructures through Irradiation of Stainless Steel Surfaces with Double Femtosecond Pulses. Nanomaterials, 2022, 12, 623.	4.1	3
3	Development of an Oriented Co-Culture System Using 3D Scaffolds Fabricated via Non-Linear Lithography. Materials, 2022, 15, 4349.	2.9	2
4	Low-autofluorescence, transparent composite for multiphoton 3D printing. Optical Materials Express, 2021, 11, 801.	3.0	13
5	Combined effect of shear stress and laser-patterned topography on Schwann cell outgrowth: synergistic or antagonistic?. Biomaterials Science, 2021, 9, 1334-1344.	5.4	7
6	Biofabrication for neural tissue engineering applications. Materials Today Bio, 2020, 6, 100043.	5.5	82
7	Response of NIH 3T3 Fibroblast Cells on Laser-Induced Periodic Surface Structures on a 15×(Ti/Zr)/Si Multilayer System. Nanomaterials, 2020, 10, 2531.	4.1	5
8	Laser-induced topographies enable the spatial patterning of co-cultured peripheral nervous system cells. Materials Science and Engineering C, 2020, 115, 111144.	7.3	9
9	Laserâ€made 3D Auxetic Metamaterial Scaffolds for Tissue Engineering Applications. Macromolecular Materials and Engineering, 2020, 305, 2000238.	3.6	33
10	Biocompatible polymeric electrospun matrices: Micro–nanotopography effect on cell behavior. Journal of Applied Polymer Science, 2020, 137, 49223.	2.6	16
11	Controlling the Outgrowth and Functions of Neural Stem Cells: The Effect of Surface Topography. ChemPhysChem, 2018, 19, 1143-1163.	2.1	36
12	Cells on hierarchically-structured platforms hosting functionalized nanoparticles. Biomaterials Science, 2018, 6, 1469-1479.	5.4	4
13	Initiatorâ€Free, Multiphoton Polymerization of Gelatin Methacrylamide. Macromolecular Materials and Engineering, 2018, 303, 1800458.	3.6	23
14	Engineering Cell Adhesion and Orientation via Ultrafast Laser Fabricated Microstructured Substrates. International Journal of Molecular Sciences, 2018, 19, 2053.	4.1	25
15	Iron Oxide Colloidal Nanoclusters as Theranostic Vehicles and Their Interactions at the Cellular Level. Nanomaterials, 2018, 8, 315.	4.1	20
16	Controlling the morphology and outgrowth of nerve and neuroglial cells: The effect of surface topography. Acta Biomaterialia, 2017, 51, 21-52.	8.3	171
17	Cell patterning via laser micro/nano structured silicon surfaces. Biofabrication, 2017, 9, 025024.	7.1	56
18	Laser processing of protein films as a method for accomplishment of cell patterning at the microscale. Biofabrication, 2017, 9, 045004.	7.1	6

Anthi Ranella

#	Article	IF	CITATIONS
19	Self-Assembled Amyloid Peptides with Arg-Gly-Asp (RGD) Motifs As Scaffolds for Tissue Engineering. ACS Biomaterials Science and Engineering, 2017, 3, 1404-1416.	5.2	38
20	FS laser processing of bio-polymer thin films for studying cell-to-substrate specific response. Applied Surface Science, 2016, 382, 178-191.	6.1	18
21	Data in support on the shape of Schwann cells and sympathetic neurons onto microconically structured silicon surfaces. Data in Brief, 2015, 4, 636-640.	1.0	2
22	Microconical silicon structures influence NGFâ€induced PC12 cell morphology. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 424-434.	2.7	35
23	Implantable vaccine development using in vitro antigen-pulsed macrophages absorbed on laser micro-structured Si scaffolds. Vaccine, 2015, 33, 3142-3149.	3.8	8
24	Laser fabricated discontinuous anisotropic microconical substrates as a new model scaffold to control the directionality of neuronal network outgrowth. Biomaterials, 2015, 67, 115-128.	11.4	80
25	Iron-oxide colloidal nanoclusters: from fundamental physical properties to diagnosis and therapy. , 2014, , .		2
26	Colloidal assemblies of oriented maghemite nanocrystals and their NMR relaxometric properties. Dalton Transactions, 2014, 43, 8395-8404.	3.3	35
27	3-Dimensional Laser Structured Scaffolds Improve Macrophage Adherence and Antigen-specific Response. Procedia Engineering, 2013, 59, 211-218.	1.2	1
28	Surface modification of collagen-based biomaterial induced by pulse width variable femtosecond laser pulses. , 2013, , .		0
29	Direct laser texturing of biomimetic surfaces for neural tissue engineering. , 2013, , .		0
30	Laser-Based Biomimetic Tissue Engineering. Biological and Medical Physics Series, 2013, , 211-236.	0.4	3
31	Fabrication of porous biopolymer substrates for cell growth by UV laser: The role of pulse duration. Applied Surface Science, 2012, 258, 8919-8927.	6.1	43
32	Tailor-made three-dimensional hybrid scaffolds for cell cultures. Biomedical Materials (Bristol), 2011, 6, 045008.	3.3	41
33	Direct laser writing of 3D scaffolds for neural tissue engineering applications. Biofabrication, 2011, 3, 045005.	7.1	180
34	Following the course of pre-implantation embryo patterning by non-linear microscopy. Journal of Structural Biology, 2011, 176, 379-386.	2.8	15
35	Biomimetic micro/nanostructured functional surfaces for microfluidic and tissue engineering applications. Biomicrofluidics, 2011, 5, 13411.	2.4	168
36	Direct laser writing of polylactide 3D scaffolds. , 2011, , .		0

Anthi Ranella

#	Article	IF	CITATIONS
37	Controlling cell adhesion via replication of laser micro/nano-textured surfaces on polymers. Biofabrication, 2011, 3, 045004.	7.1	50
38	Direct laser writing of polylactide 3D scaffolds for neural tissue engineering applications. , 2011, , .		4
39	Three-dimensional Polycaprolactone Structures Fabricated by Two-Photon Polymerization. , 2010, , .		0
40	Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomaterialia, 2010, 6, 2711-2720.	8.3	395
41	Laser-based micro/nanoengineering for biological applications. Progress in Quantum Electronics, 2009, 33, 127-163.	7.0	92
42	Three-Dimensional Biodegradable Structures Fabricated by Two-Photon Polymerization. Langmuir, 2009, 25, 3219-3223.	3.5	177
43	Quantification of the activity of biomolecules in microarrays obtained by direct laser transfer. Biomedical Microdevices, 2008, 10, 719-725.	2.8	58
44	Fabrication of amyloid peptide microâ€arrays using laserâ€induced forward transfer and avidinâ€biotin mediated assembly. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3576-3579.	0.8	8
45	Applications of ultrafast lasers in materials processing: fabrication on self-cleaning surfaces and scaffolds for tissue engineering. , 2008, , .		0
46	Directed Three-Dimensional Patterning of Self-Assembled Peptide Fibrils. Nano Letters, 2008, 8, 538-543.	9.1	125
47	Parameters optimization for biological molecules patterning using 248-nm ultrafast lasers. Applied Surface Science, 2007, 254, 1164-1168.	6.1	18
48	Constitutive intracellular expression of human leukocyte antigen (HLA)-DO and HLA-DR but not HLA-DM in trophoblast cells. Human Immunology, 2005, 66, 43-55.	2.4	36
49	IFN-Î ³ Facilitates Release of Class II-Loaded Intracellular Pools in Trophoblast Cells: A Novel Property Independent of Protein Synthesis. Journal of Interferon and Cytokine Research, 2000, 20, 823-830.	1.2	13
50	Detection of soluble HLA-G levels in maternal serum can be predictive for a successful pregnancy. Transplantation Proceedings, 1999, 31, 1834-1837.	0.6	30
51	Inhibition of Nitric Oxide Production Rescues LPS-Induced Fetal Abortion in Mice. Nitric Oxide - Biology and Chemistry, 1999, 3, 216-224.	2.7	48
52	Serum levels of pro- and anti-inflammatory cytokines in non-pregnant women, during pregnancy, labour and abortion. Mediators of Inflammation, 1998, 7, 69-72.	3.0	110
53	Production of Embryotoxic IgG Antibodies During IFNâ€Î³ Treatment of Pregnant Mice. American Journal of Reproductive Immunology, 1996, 36, 111-117.	1.2	19