Stefan Abele

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4805758/publications.pdf

Version: 2024-02-01

471477 434170 36 985 17 31 citations h-index g-index papers 42 42 42 1238 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Industrial Applications of the Diels–Alder Reaction. Angewandte Chemie - International Edition, 2013, 52, 3822-3863.	13.8	229
2	2-Imino-thiazolidin-4-one Derivatives as Potent, Orally Active S1P ₁ Receptor Agonists. Journal of Medicinal Chemistry, 2010, 53, 4198-4211.	6.4	161
3	Scalable Synthesis of Enantiomerically Pure Bicyclo[2.2.2]octadiene Ligands. Journal of Organic Chemistry, 2012, 77, 4765-4773.	3. 2	62
4	Development of a Scaleable Route for the Production ofcis-N-Benzyl-3-methylamino-4-methylpiperidine. Organic Process Research and Development, 2003, 7, 115-120.	2.7	40
5	Scalable Synthesis of Trifluoromethylated Imidazo-Fused N-Heterocycles Using TFAA and Trifluoroacetamide as CF ₃ -Reagents. Organic Letters, 2017, 19, 6578-6581.	4.6	39
6	A Practical Synthesis of Renin Inhibitor MK-1597 (ACT-178882) via Catalytic Enantioselective Hydrogenation and Epimerization of Piperidine Intermediate. Journal of Organic Chemistry, 2011, 76, 1062-1071.	3.2	27
7	Catalytic Asymmetric Reduction of a 3,4-Dihydroisoquinoline for the Large-Scale Production of Almorexant: Hydrogenation or Transfer Hydrogenation?. Organic Process Research and Development, 2013, 17, 1531-1539.	2.7	26
8	Practical and Scalable Synthesis of S1P ₁ Receptor Agonist ACT-209905. Organic Process Research and Development, 2012, 16, 595-604.	2.7	24
9	High-Temperature Diels–Alder Reactions: Transfer from Batch to Continuous Mode. Organic Process Research and Development, 2012, 16, 1114-1120.	2.7	23
10	Design and Scale-Up of a Practical Enantioselective Route to 5-Phenylbicyclo[2.2.2]oct-5-en-2-one. Organic Process Research and Development, 2012, 16, 129-140.	2.7	23
11	A One-Pot Diazotation–Fluorodediazoniation Reaction and Fluorine Gas for the Production of Fluoronaphthyridines. Organic Process Research and Development, 2014, 18, 993-1001.	2.7	23
12	Novel S1P ₁ Receptor Agonists â^ Part 3: From Thiophenes to Pyridines. Journal of Medicinal Chemistry, 2014, 57, 110-130.	6.4	22
13	Metal-Free Amidation of Acids with Formamides and T3P®. Synthesis, 2016, 48, 2069-2078.	2.3	21
14	Design and Scale-Up of Diels–Alder Reactions for the Practical Synthesis of 5-Phenylbicyclo[2.2.2]oct-5-en-2-one. Organic Process Research and Development, 2011, 15, 1420-1427.	2.7	20
15	Safety Assessment of Diels–Alder Reactions with Highly Reactive Acrylic Monomers. Organic Process Research and Development, 2012, 16, 2015-2020.	2.7	18
16	Novel S1P ₁ Receptor Agonists â€" Part 1: From Pyrazoles to Thiophenes. Journal of Medicinal Chemistry, 2013, 56, 9737-9755.	6.4	18
17	One-Pot Synthesis of Trifluoromethylated Quinazolin-4(3H)-ones with Trifluoroacetic Acid as CF3Source. Journal of Organic Chemistry, 2018, 83, 5104-5113.	3.2	17
18	Development of an efficient and sustainable synthesis of 2-(3-methyl-1 <i>H</i> -1,2,4-triazol-1-yl) acetic acid under continuous-flow conditions. Green Chemistry, 2020, 22, 3748-3758.	9.0	15

#	Article	IF	CITATIONS
19	Discovery of Highly Potent Dual Orexin Receptor Antagonists via a Scaffoldâ€Hopping Approach. ChemMedChem, 2016, 11, 2132-2146.	3.2	14
20	<i>C</i> ₁ â€Symmetric Bicyclo[2.2.2]octaâ€2,5â€diene (bod*) Ligands in Rhodiumâ€Catalyzed Asymmetric 1,4â€Addition of Arylboronic Acids to Enones and 1,2â€Addition to <i>N</i> à€[(4â€Nitrophenyl)sulfonyl]imines. Helvetica Chimica Acta, 2012, 95, 1809-1817.	1.6	12
21	Development of a Scalable Route for a Key Thiadiazole Building Block via Sequential Sandmeyer Bromination and Room-Temperature Suzuki–Miyaura Coupling. Organic Process Research and Development, 2020, 24, 228-234.	2.7	11
22	Diastereospecific Enolate Addition and Atom-Efficient Benzimidazole Synthesis for the Production of L/T Calcium Channel Blocker ACT-280778. Organic Process Research and Development, 2014, 18, 1674-1685.	2.7	10
23	Thermal Overman Rearrangement of a Glucal Derivative in a Tube Reactor on Pilot Plant Scale. Organic Process Research and Development, 2016, 20, 446-451.	2.7	10
24	Scalable and Practical Synthesis of Halo Quinolin- $2(1H)$ -ones and Quinolines. Organic Process Research and Development, 2017, 21, 1003-1011.	2.7	10
25	Scalable Process for the Production of a Highly Energetic Bromoacetylene Building Block. Organic Process Research and Development, 2018, 22, 1409-1418.	2.7	10
26	Practical Synthesis of a S1P Receptor 1 Agonist via a Guareschi–Thorpe Reaction. Organic Process Research and Development, 2016, 20, 1637-1646.	2.7	8
27	Enantiospecific cyclization of methyl N-(tert-butoxycarbonyl)-N-(3-chloropropyl)-D-alaninate to 2-methylproline derivative via â€~memory of chirality' in flow. Journal of Flow Chemistry, 2019, 9, 19-25.	1.9	8
28	Continuous Process for Phase-Transfer-Catalyzed Bisalkylation of Cyclopentadiene for the Synthesis of Spiro[2.4]hepta-4,6-diene. Organic Process Research and Development, 2016, 20, 432-439.	2.7	7
29	Short Synthesis of a Proline Amide Orexin Receptor Antagonist on the Pilot Plant Scale. Organic Process Research and Development, 2014, 18, 1759-1762.	2.7	6
30	Safety Assessment for the Scale-up of an Oxime Reduction with Melted Sodium in Standard Pilot-Plant Equipment. Organic Process Research and Development, 2012, 16, 2008-2014.	2.7	2
31	Thermal Risk Assessment: A Powerful Tool for Route Selection for Scale-Up Applied to Diels–Alder Reactions. ACS Symposium Series, 2014, , 189-210.	0.5	2
32	Catalytic C–H Arylations as a Tool for Making Pharmaceuticals. Organic Process Research and Development, 2015, 19, 259-259.	2.7	2
33	Invited Academic Review Focused on Catalytic Reductions. Organic Process Research and Development, 2014, 18, 288-288.	2.7	1
34	Trevor Lairdâ€"Process Chemistry Visionary. Organic Process Research and Development, 2015, 19, 949-949.	2.7	1
35	Invited Academic Review. Organic Process Research and Development, 2013, 17, 750-750.	2.7	0
36	Invited Academic Review on Late-Stage Fluorination. Organic Process Research and Development, 2014, 18, 473-473.	2.7	0