
Michael Holinstat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/48056/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	E-selectin inhibitor is superior to low-molecular-weight heparin for the treatment of experimental venous thrombosis. Journal of Vascular Surgery: Venous and Lymphatic Disorders, 2022, 10, 211-220.	0.9	5
2	Mitigation of SARS-CoV2-Mediated Endothelial Injury via Suppression of the Epigenetic Enzyme KMT2A/MLL1 in Macrophages. Journal of Vascular Surgery: Venous and Lymphatic Disorders, 2022, 10, 541-543.	0.9	0
3	Defibrotide Therapy for SARS-CoV-2 ARDS. Chest, 2022, 162, 346-355.	0.4	7
4	207 Omega-3 and omega-6 fatty acids attenuate platelet reactivity in postmenopausal women. Journal of Clinical and Translational Science, 2022, 6, 31-32.	0.3	0
5	Supplementation with omegaâ€3 or omegaâ€6 fatty acids attenuates platelet reactivity in postmenopausal women. Clinical and Translational Science, 2022, 15, 2378-2391.	1.5	6
6	DHA 12â€LOXâ€derived oxylipins regulate platelet activation and thrombus formation through a PKAâ€dependent signaling pathway. Journal of Thrombosis and Haemostasis, 2021, 19, 839-851.	1.9	23
7	Slounase, a Batroxobin Containing Activated Factor X Effectively Enhances Hemostatic Clot Formation and Reducing Bleeding in Hypocoagulant Conditions in Mice. Clinical and Applied Thrombosis/Hemostasis, 2021, 27, 107602962110185.	0.7	1
8	Antisense oligonucleotides and nucleic acids generate hypersensitive platelets. Thrombosis Research, 2021, 200, 64-71.	0.8	11
9	Deformable microparticles for shuttling nanoparticles to the vascular wall. Science Advances, 2021, 7, .	4.7	28
10	Potential repurposing of the HDAC inhibitor valproic acid for patients with COVID-19. European Journal of Pharmacology, 2021, 898, 173988.	1.7	31
11	<i>In Vitro</i> Biosynthetic Pathway Investigations of Neuroprotectin D1 (NPD1) and Protectin DX (PDX) by Human 12-Lipoxygenase, 15-Lipoxygenase-1, and 15-Lipoxygenase-2. Biochemistry, 2021, 60, 1741-1754.	1.2	20
12	Pharmacologic targeting of Cdc42 GTPase by a small molecule Cdc42 activity-specific inhibitor prevents platelet activation and thrombosis. Scientific Reports, 2021, 11, 13170.	1.6	6
13	Controlling the Clot: ANXA7 Regulates Collagen Activation of Platelet Through 12-LOX. Circulation Research, 2021, 129, 508-510.	2.0	2
14	PD-L1 expression on circulating tumor cells and platelets in patients with metastatic breast cancer. PLoS ONE, 2021, 16, e0260124.	1.1	26
15	Role of 12-LOX in the Platelet Storage Lesion. Blood, 2021, 138, 3241-3241.	0.6	1
16	Role of Human 15-Lipoxygenase-2 in the Biosynthesis of the Lipoxin Intermediate, 5S,15S-diHpETE, Implicated with the Altered Positional Specificity of Human 15-Lipoxygenase-1. Biochemistry, 2020, 59, 4118-4130.	1.2	14
17	Omega-6 DPA and its 12-lipoxygenase–oxidized lipids regulate platelet reactivity in a nongenomic PPARI±-dependent manner. Blood Advances, 2020, 4, 4522-4537.	2.5	17
18	Popping the lid on PAR4 activation. Blood, 2020, 136, 2101-2102.	0.6	0

2

#	Article	IF	CITATIONS
19	15-Lipoxygenase-1 biosynthesis of 7S,14S-diHDHA implicates 15-lipoxygenase-2 in biosynthesis of resolvin D5. Journal of Lipid Research, 2020, 61, 1087-1103.	2.0	35
20	GPR56/ADGRG1 is a platelet collagen-responsive GPCR and hemostatic sensor of shear force. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28275-28286.	3.3	61
21	Synthetic high-density lipoproteins loaded with an antiplatelet drug for efficient inhibition of thrombosis in mice. Science Advances, 2020, 6, .	4.7	11
22	Biosynthesis of the Maresin Intermediate, 13S,14S-Epoxy-DHA, by Human 15-Lipoxygenase and 12-Lipoxygenase and Its Regulation through Negative Allosteric Modulators. Biochemistry, 2020, 59, 1832-1844.	1.2	25
23	A new way to treat proximal deep venous thrombosis using E-selectin inhibition. Journal of Vascular Surgery: Venous and Lymphatic Disorders, 2020, 8, 268-278.	0.9	14
24	Formation and Resolution of Pial Microvascular Thrombosis in a Mouse Model of Thrombotic Thrombocytopenic Purpura. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1817-1830.	1.1	9
25	Resolvin the clot: DVT resolution through RvD4. Blood, 2019, 134, 1370-1371.	0.6	4
26	KLF11 (Krüppel-Like Factor 11) Inhibits Arterial Thrombosis via Suppression of Tissue Factor in the Vascular Wall. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 402-412.	1.1	15
27	In vivo modeling of docosahexaenoic acid and eicosapentaenoic acid-mediated inhibition of both platelet function and accumulation in arterial thrombi. Platelets, 2019, 30, 271-279.	1.1	17
28	Modified two-step emulsion solvent evaporation technique for fabricating biodegradable rod-shaped particles in the submicron size range. Journal of Colloid and Interface Science, 2018, 518, 174-183.	5.0	14
29	New LINE(s) of Evidence for Genetic Regulation of Platelets. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 690-691.	1.1	1
30	5 <i>S</i> ,15 <i>S</i> -Dihydroperoxyeicosatetraenoic Acid (5,15-diHpETE) as a Lipoxin Intermediate: Reactivity and Kinetics with Human Leukocyte 5-Lipoxygenase, Platelet 12-Lipoxygenase, and Reticulocyte 15-Lipoxygenase-1. Biochemistry, 2018, 57, 6726-6734.	1.2	22
31	Regulation of platelet function and thrombosis by omega-3 and omega-6 polyunsaturated fatty acids. Prostaglandins and Other Lipid Mediators, 2018, 139, 10-18.	1.0	72
32	Characterization of hemostasis in mice lacking the novel thrombosis susceptibility gene Slc44a2. Thrombosis Research, 2018, 171, 155-159.	0.8	20
33	Nfe2 is dispensable for early but required for adult thrombocyte formation and function in zebrafish. Blood Advances, 2018, 2, 3418-3427.	2.5	16
34	Genetic Variant in Human PAR (Protease-Activated Receptor) 4 Enhances Thrombus Formation Resulting in Resistance to Antiplatelet Therapeutics. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1632-1643.	1.1	31
35	Platelet Signaling and Disease: Targeted Therapy for Thrombosis and Other Related Diseases. Pharmacological Reviews, 2018, 70, 526-548.	7.1	131
36	The Antithrombotic Effects of 12‣OX Derived Metabolites of DPA, ωâ€6. FASEB Journal, 2018, 32, 571.5.	0.2	0

3

#	Article	IF	CITATIONS
37	Exploring deformable particles in vascular-targeted drug delivery: Softer is only sometimes better. Biomaterials, 2017, 124, 169-179.	5.7	45
38	Complement factors (H) into thrombosis. Blood, 2017, 129, 1065-1066.	0.6	2
39	The expansive role of oxylipins on platelet biology. Journal of Molecular Medicine, 2017, 95, 575-588.	1.7	70
40	Who is the real 12-HETrE?. Prostaglandins and Other Lipid Mediators, 2017, 132, 25-30.	1.0	9
41	Neutrophil–Particle Interactions in Blood Circulation Drive Particle Clearance and Alter Neutrophil Responses in Acute Inflammation. ACS Nano, 2017, 11, 10797-10807.	7.3	71
42	Targeting 12-Lipoxygenase as a Potential Novel Antiplatelet Therapy. Trends in Pharmacological Sciences, 2017, 38, 1006-1015.	4.0	45
43	First Selective 12-LOX Inhibitor, ML355, Impairs Thrombus Formation and Vessel Occlusion In Vivo With Minimal Effects on Hemostasis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1828-1839.	1.1	76
44	Anti-inflammatory ω-3 endocannabinoid epoxides. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6034-E6043.	3.3	136
45	Normal platelet function. Cancer and Metastasis Reviews, 2017, 36, 195-198.	2.7	242
46	12-HETrE inhibits platelet reactivity and thrombosis in part through the prostacyclin receptor. Blood Advances, 2017, 1, 1124-1131.	2.5	26
47	Identification of a functional genetic variant driving racially dimorphic platelet gene expression of the thrombin receptor regulator, PCTP. Thrombosis and Haemostasis, 2017, 117, 962-970.	1.8	5
48	Development of Poly Unsaturated Fatty Acid Derivatives of Aspirin for Inhibition of Platelet Function. Journal of Pharmacology and Experimental Therapeutics, 2016, 359, 134-141.	1.3	13
49	12(S)-HETrE, a 12-Lipoxygenase Oxylipin of Dihomo-Î ³ -Linolenic Acid, Inhibits Thrombosis via Gα _s Signaling in Platelets. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 2068-2077.	1.1	60
50	Evaluation of receptorâ€ligand mechanisms of dualâ€targeted particles to an inflamed endothelium. Bioengineering and Translational Medicine, 2016, 1, 103-115.	3.9	23
51	The Common PAR4 Ala120Thr Variant Has a Major Effect on Platelet Reactivity to Thrombin and These Effects Are Enhanced with PAR1 and P2Y12 Inhibition. Blood, 2016, 128, 709-709.	0.6	Ο
52	Potent Anti-Platelet Metabolite, 12-HETrE, Inhibits Platelet Activation and Thrombosis In Vivo Via Activation of the IP Receptor. Blood, 2016, 128, 714-714.	0.6	0
53	Coronary Heart Disease Risk Factors Take a Disproportional Toll on Women. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 750-751.	1.1	2
54	Dual antiplatelet therapy for PCI: Are we tailored to all?. Thrombosis Research, 2015, 135, 1045-1046.	0.8	2

#	Article	IF	CITATIONS
55	Novel 12-LOX Inhibitor ML355 Attenuates Platelet Reactivity and Impairs Thrombus Growth, Stability and Vessel Occlusion In Vivo. Blood, 2015, 126, 3442-3442.	0.6	1
56	Pharmacogenocis of PAR4: PAR4 Polymorphism Determines Platelet Response in the Presence of Dual Anti-Platelet Therapy. Blood, 2015, 126, 3446-3446.	0.6	0
57	Identification of the Genetic Mechanism Responsible for Racially-Dimorphic Expression of the Thrombin-Receptor Regulator, Pctp. Blood, 2015, 126, 415-415.	0.6	7
58	MicroRNA Expression Differences in Human Hematopoietic Cell Lineages Enable Regulated Transgene Expression. PLoS ONE, 2014, 9, e102259.	1.1	77
59	The emerging role of oxylipins in thrombosis and diabetes. Frontiers in Pharmacology, 2014, 4, 176.	1.6	73
60	Mechanism of Race-Dependent Platelet Activation Through the Protease-Activated Receptor-4 and Gq Signaling Axis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2644-2650.	1.1	50
61	Racial Differences in Resistance to P2Y ₁₂ Receptor Antagonists in Type 2 Diabetic Subjects. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 33-43.	1.3	4
62	Synthesis and Structure–Activity Relationship Studies of 4-((2-Hydroxy-3-methoxybenzyl)amino)benzenesulfonamide Derivatives as Potent and Selective Inhibitors of 12-Lipoxygenase. Journal of Medicinal Chemistry, 2014, 57, 495-506.	2.9	67
63	Human platelet microRNA-mRNA networks associated with age and gender revealed by integrated plateletomics. Blood, 2014, 123, e37-e45.	0.6	199
64	Common variants in the human platelet PAR4 thrombin receptor alter platelet function and differ by race. Blood, 2014, 124, 3450-3458.	0.6	107
65	Platelet 12-LOX is essential for $Fc\hat{I}^{3}RII$ a-mediated platelet activation. Blood, 2014, 124, 2271-2279.	0.6	81
66	PAR4 Mediates an Elevated Risk for Thrombosis in Blacks Relative to Whites (LB602). FASEB Journal, 2014, 28, LB602.	0.2	0
67	12-HETrE, a Novel 12-LOX Oxylipin, Prevents Platelet Activation in a Gαs-like Manner. Blood, 2014, 124, 1436-1436.	0.6	0
68	Identification of a Racially Dimorphic Variant in the Human Platelet PAR4 Thrombin Receptor Altering Platelet Function and Pharmacologic Inhibition. Blood, 2014, 124, 1434-1434.	0.6	11
69	Racial differences in human platelet PAR4 reactivity reflect expression of PCTP and miR-376c. Nature Medicine, 2013, 19, 1609-1616.	15.2	190
70	Dichotomous effects of exposure to bivalirudin in patients undergoing percutaneous coronary intervention on protease-activated receptor-mediated platelet activation. Journal of Thrombosis and Thrombolysis, 2013, 35, 209-222.	1.0	4
71	12-lipoxygenase activity plays an important role in PAR4 and GPVI-mediated platelet reactivity. Thrombosis and Haemostasis, 2013, 110, 569-581.	1.8	54
72	Racial Differences In Thrombin-Induced Human Platelet PAR4 Reactivity. Blood, 2013, 122, 1054-1054.	0.6	0

#	Article	IF	CITATIONS
73	Effect Of Age and Gender On Human Platelet mRNA and Micro-RNA Levels. Blood, 2013, 122, 3518-3518.	0.6	Ο
74	Investigations of human platelet-type 12-lipoxygenase: role of lipoxygenase products in platelet activation. Journal of Lipid Research, 2012, 53, 2546-2559.	2.0	77
75	Protein Kinase C Regulation of 12-Lipoxygenase-Mediated Human Platelet Activation. Molecular Pharmacology, 2012, 81, 420-430.	1.0	38
76	Newer agents in antiplatelet therapy: a review. Journal of Blood Medicine, 2012, 3, 33.	0.7	42
77	Rap1-Rac1 Circuits Potentiate Platelet Activation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 434-441.	1.1	60
78	A Large Cluster of Micrornas At 14q32 Defines an RNA Expression Module That Accounts for Racial Differences in Protease Activated Receptor 4-Mediated Platelet Reactivity. Blood, 2012, 120, 380-380.	0.6	1
79	The regulation of thrombosis and hemostasis by fatty acid metabolites. FASEB Journal, 2012, 26, 991.1.	0.2	Ο
80	An ω-6 Fatty Acid, Dgla, Prevents Platelet Activation and Thrombosis in Vivo Blood, 2012, 120, 2169-2169.	0.6	0
81	Discovery of Potent and Selective Inhibitors of Human Platelet-Type 12- Lipoxygenase. Journal of Medicinal Chemistry, 2011, 54, 5485-5497.	2.9	59
82	Protease-Activated Receptor Signaling in Platelets Activates Cytosolic Phospholipase A _{2α} Differently for Cyclooxygenase-1 and 12-Lipoxygenase Catalysis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 435-442.	1.1	56
83	We Can Do It Together: PAR1/PAR2 Heterodimer Signaling in VSMCs. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2775-2776.	1.1	5
84	Protein kinase Cα phosphorylates the TRPC1 channel and regulates store-operated Ca2+ entry in endothelial cells Journal of Biological Chemistry, 2011, 286, 36162.	1.6	0
85	12-Lipoxygenase: A Potential Target for Novel Anti-Platelet Therapeutics. Cardiovascular and Hematological Agents in Medicinal Chemistry, 2011, 9, 154-164.	0.4	59
86	Altered platelet reactivity in humans diagnosed with type 2 diabetes mellitus. FASEB Journal, 2011, 25, 1089.5.	0.2	0
87	Protein kinase C regulates agonistâ€mediated platelet activation downstream of 12â€lipoxygenase in human platelets. FASEB Journal, 2011, 25, 1089.1.	0.2	Ο
88	Differential signaling of PAR1 and PAR4 through 12â€hLO. FASEB Journal, 2011, 25, 1009.6.	0.2	0
89	12-HETrE, An Endogenous Inhibitor of Platelet Activation,. Blood, 2011, 118, 3254-3254.	0.6	12
90	Role of protein kinase Cζ in thrombin-induced RhoA activation and inter-endothelial gap formation of human dermal microvessel endothelial cell monolayers. Microvascular Research, 2010, 80, 240-249.	1.1	34

#	Article	IF	CITATIONS
91	12â€Lipoxygenase plays a significant role in regulation of human platelets activation. FASEB Journal, 2010, 24, 574.4.	0.2	0
92	Platelet 12-Lipoxygenase Is Required for Dense Granule Secretion and Platelet Aggregation: Role of 12-hLO In Platelet Hemostasis and Thrombosis. Blood, 2010, 116, 3203-3203.	0.6	0
93	Irreversible Platelet Activation Requires Protease-Activated Receptor 1-Mediated Signaling to Phosphatidylinositol Phosphates. Molecular Pharmacology, 2009, 76, 301-313.	1.0	27
94	PAR1â€mediated stable platelet aggregation requires temporal regulation of Rap1 activity by phosphatidylinositol phosphates (PIPns) FASEB Journal, 2008, 22, 646.3.	0.2	0
95	PAR1, but Not PAR4, Activates Human Platelets through a Gi/o/Phosphoinositide-3 Kinase Signaling Axis. Molecular Pharmacology, 2007, 71, 1399-1406.	1.0	73
96	Protease-Activated Receptors Differentially Regulate Human Platelet Activation through a Phosphatidic Acid-Dependent Pathway. Molecular Pharmacology, 2007, 71, 686-694.	1.0	37
97	Plâ€3K differentially regulates protease activated receptorâ€mediated platelet activation in humans through Rap1. FASEB Journal, 2007, 21, A603.	0.2	0
98	Irreversible Platelet Activation Requires PAR1 Regulation of Phosphatidylinositol Phosphates (PIPns) Activation of Rap1 Blood, 2007, 110, 3889-3889.	0.6	0
99	PAR4, but Not PAR1, Signals Human Platelet Aggregation via Ca2+ Mobilization and Synergistic P2Y12 Receptor Activation. Journal of Biological Chemistry, 2006, 281, 26665-26674.	1.6	99
100	Suppression of RhoA Activity by Focal Adhesion Kinase-induced Activation of p190RhoGAP. Journal of Biological Chemistry, 2006, 281, 2296-2305.	1.6	150
101	Protease Activated Receptors Differentially Regulate Human Platelet Activation through Phosphatidic Acid-Dependent DAG Formation Blood, 2006, 108, 3906-3906.	0.6	7
102	Functional Selectivity of G Protein Signaling by Agonist Peptides and Thrombin for the Protease-activated Receptor-1*. Journal of Biological Chemistry, 2005, 280, 25048-25059.	1.6	173
103	Interaural Level Difference Processing in the Lateral Superior Olive and the Inferior Colliculus. Journal of Neurophysiology, 2004, 92, 289-301.	0.9	61
104	Protein Kinase Cα Phosphorylates the TRPC1 Channel and Regulates Store-operated Ca2+ Entry in Endothelial Cells. Journal of Biological Chemistry, 2004, 279, 20941-20949.	1.6	160
105	Protein Kinase Cα-Induced p115RhoGEF Phosphorylation Signals Endothelial Cytoskeletal Rearrangement. Journal of Biological Chemistry, 2003, 278, 28793-28798.	1.6	141
106	RhoA Interaction with Inositol 1,4,5-Trisphosphate Receptor and Transient Receptor Potential Channel-1 Regulates Ca2+ Entry. Journal of Biological Chemistry, 2003, 278, 33492-33500.	1.6	198
107	Modulatory role of focal adhesion kinase in regulating human pulmonary arterial endothelial barrier function. Journal of Physiology, 2002, 539, 779-789.	1.3	83