Damien J Downes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4805589/publications.pdf

Version: 2024-02-01

567144 454834 1,281 32 15 30 citations h-index g-index papers 49 49 49 1894 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Highly efficient CRISPR-Cas9-mediated editing identifies novel mechanosensitive microRNA-140 targets in primary human articular chondrocytes. Osteoarthritis and Cartilage, 2022, , .	0.6	6
2	Capture-C: a modular and flexible approach for high-resolution chromosome conformation capture. Nature Protocols, 2022, 17, 445-475.	5 . 5	24
3	Dynamic Runx1 chromatin boundaries affect gene expression in hematopoietic development. Nature Communications, 2022, 13, 773.	5.8	10
4	Natural and Experimental Rewiring of Gene Regulatory Regions. Annual Review of Genomics and Human Genetics, 2022, 23, .	2.5	1
5	The chromatin remodeller ATRX facilitates diverse nuclear processes, in a stochastic manner, in both heterochromatin and euchromatin. Nature Communications, 2022, 13 , .	5.8	20
6	Genetic and functional insights into CDA-I prevalence and pathogenesis. Journal of Medical Genetics, 2021, 58, 185-195.	1.5	9
7	A remarkable case of HbH disease illustrates the relative contributions of the \hat{l} ±-globin enhancers to gene expression. Blood, 2021, 137, 572-575.	0.6	6
8	High-resolution targeted 3C interrogation of cis-regulatory element organization at genome-wide scale. Nature Communications, 2021, 12, 531.	5.8	32
9	Fra-1 regulates its target genes via binding to remote enhancers without exerting major control on chromatin architecture in triple negative breast cancers. Nucleic Acids Research, 2021, 49, 2488-2508.	6.5	15
10	Enhancers predominantly regulate gene expression during differentiation via transcription initiation. Molecular Cell, 2021, 81, 983-997.e7.	4.5	27
11	Multi Locus View: an extensible web-based tool for the analysis of genomic data Communications Biology, 2021, 4, 623.	2.0	4
12	Defining genome architecture at base-pair resolution. Nature, 2021, 595, 125-129.	13.7	107
13	Duplication and Functional Divergence of Branched-Chain Amino Acid Biosynthesis Genes in Aspergillus nidulans. MBio, 2021, 12, e0076821.	1.8	8
14	A gain-of-function single nucleotide variant creates a new promoter which acts as an orientation-dependent enhancer-blocker. Nature Communications, 2021, 12, 3806.	5.8	18
15	Reactivation of a developmentally silenced embryonic globin gene. Nature Communications, 2021, 12, 4439.	5.8	19
16	Recapitulation of erythropoiesis in congenital dyserythropoietic anemia type I (CDA-I) identifies defects in differentiation and nucleolar abnormalities. Haematologica, 2021, 106, 2960-2970.	1.7	10
17	Identification of LZTFL1 as a candidate effector gene at a COVID-19 risk locus. Nature Genetics, 2021, 53, 1606-1615.	9.4	93
18	Hypoxia Induces Transcriptional and Translational Downregulation of the Type I IFN Pathway in Multiple Cancer Cell Types. Cancer Research, 2020, 80, 5245-5256.	0.4	46

#	Article	IF	Citations
19	Comparing the two leading erythroid lines BEL-A and HUDEP-2. Haematologica, 2020, 105, e389-e394.	1.7	27
20	Absolute Quantification of Transcription Factors Reveals Principles of Gene Regulation in Erythropoiesis. Molecular Cell, 2020, 78, 960-974.e11.	4.5	83
21	DOT1L inhibition reveals a distinct subset of enhancers dependent on H3K79 methylation. Nature Communications, 2019, 10, 2803.	5.8	99
22	High-Throughput Genotyping of CRISPR/Cas Edited Cells in 96-Well Plates. Methods and Protocols, 2018, 1, 29.	0.9	6
23	Single-allele chromatin interactions identify regulatory hubs in dynamic compartmentalized domains. Nature Genetics, 2018, 50, 1744-1751.	9.4	150
24	Impaired DNA demethylation of C/EBP sites causes premature aging. Genes and Development, 2018, 32, 742-762.	2.7	30
25	Functional characterisation of cis-regulatory elements governing dynamic <i>Eomes</i> expression in the early mouse embryo. Development (Cambridge), 2017, 144, 1249-1260.	1.2	32
26	Tissue-specific CTCF–cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo. Nature Cell Biology, 2017, 19, 952-961.	4.6	179
27	Robust detection of chromosomal interactions from small numbers of cells using low-input Capture-C. Nucleic Acids Research, 2017, 45, e184-e184.	6.5	27
28	Low-input Capture-C: A Chromosome Conformation Capture Assay to Analyze Chromatin Architecture in Small Numbers of Cells. Bio-protocol, 2017, 7, .	0.2	15
29	Spatial differentiation of gene expression in Aspergillus niger colony grown for sugar beet pulp utilization. Scientific Reports, 2015, 5, 13592.	1.6	15
30	Characterization of the Mutagenic Spectrum of 4-Nitroquinoline 1-Oxide (4-NQO) in <i>Aspergillus nidulans</i> by Whole Genome Sequencing. G3: Genes, Genomes, Genetics, 2014, 4, 2483-2492.	0.8	38
31	Dual <scp>DNA</scp> binding and coactivator functions of <scp><i>A</i></scp> <i>spergillus nidulans</i> ê€ <scp>TamA</scp> , a <scp>Z</scp> n(<scp>II</scp>)2 <scp>Cys</scp> 6 transcription factor. Molecular Microbiology, 2014, 92, 1198-1211.	1.2	16
32	Regulation of the NADP-glutamate dehydrogenase gene gdhA in Aspergillus nidulans by the Zn(II)2Cys6 transcription factor LeuB. Microbiology (United Kingdom), 2013, 159, 2467-2480.	0.7	27