Je Seung Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4805409/publications.pdf

Version: 2024-02-01

201674 138484 3,419 72 27 58 h-index citations g-index papers 72 72 72 4612 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Facile Ionothermal Synthesis of Microporous and Mesoporous Carbons from Task Specific Ionic Liquids. Journal of the American Chemical Society, 2009, 131, 4596-4597.	13.7	404
2	Ammonia-Treated Ordered Mesoporous Carbons as Catalytic Materials for Oxygen Reduction Reaction. Chemistry of Materials, 2010, 22, 2178-2180.	6.7	344
3	Fluidic Carbon Precursors for Formation of Functional Carbon under Ambient Pressure Based on Ionic Liquids. Advanced Materials, 2010, 22, 1004-1007.	21.0	316
4	Performance of nitrile-containing anions in task-specific ionic liquids for improved CO2/N2 separation. Journal of Membrane Science, 2010, 353, 177-183.	8.2	190
5	Extractive Desulfurization Using Fe-Containing Ionic Liquids. Energy & Ener	5.1	186
6	Ether-functionalized ionic liquids as highly efficient SO2 absorbents. Energy and Environmental Science, 2011, 4, 1802.	30.8	168
7	Ionic Liquids for Electrochemical Devices. Electrochemistry, 2007, 75, 23-34.	1.4	162
8	Isolation of an Oxomanganese(V) Porphyrin Intermediate in the Reaction of a Manganese(III) Porphyrin Complex and H2O2 in Aqueous Solution. Chemistry - A European Journal, 2002, 8, 2067-2071.	3.3	135
9	Preparation of activated mesoporous carbons for electrosorption of ions from aqueous solutions. Journal of Materials Chemistry, 2010, 20, 4602.	6.7	121
10	Boron and nitrogen-rich carbons from ionic liquid precursors with tailorable surface properties. Physical Chemistry Chemical Physics, 2011, 13, 13486.	2.8	98
11	Ultrastable Superbase-Derived Protic Ionic Liquids. Journal of Physical Chemistry B, 2009, 113, 4181-4183.	2.6	97
12	Ionothermal carbonization of sugars in a protic ionic liquid under ambient conditions. Carbon, 2010, 48, 3364-3368.	10.3	74
13	Cation Cross-Linked Ionic Liquids as Anion-Exchange Materials. Chemistry of Materials, 2009, 21, 4756-4758.	6.7	66
14	Ammonia-activated mesoporous carbon membranes for gas separations. Journal of Membrane Science, 2011, 368, 41-47.	8.2	63
15	Novel composite electrolyte membranes consisting of fluorohydrogenate ionic liquid and polymers for the unhumidified intermediate temperature fuel cell. Journal of Power Sources, 2007, 171, 535-539.	7.8	62
16	Fe-containing ionic liquids as catalysts for the dimerization of bicyclo [2.2.1] hepta-2,5-diene. Journal of Catalysis, 2008, 258, 5-13.	6.2	62
17	Steric hindrance-induced zwitterionic carbonates from alkanolamines and CO2: highly efficient CO2 absorbents. Energy and Environmental Science, 2011, 4, 4284.	30.8	60
18	Phosphine-bound zinc halide complexes for the coupling reaction of ethylene oxide and carbon dioxide. Journal of Catalysis, 2005, 232, 80-84.	6.2	59

#	Article	IF	Citations
19	Zn-containing ionic liquids bearing dialkylphosphate ligands for the coupling reactions of epoxides and CO2. Applied Catalysis B: Environmental, 2012, 111-112, 621-627.	20.2	58
20	Multi-functional zwitterionic compounds as additives for lithium battery electrolytes. Electrochemistry Communications, 2007, 9, 109-114.	4.7	56
21	lonic liquids as benign catalysts for the carbonylation of amines to formamides. Applied Catalysis A: General, 2011, 404, 87-92.	4.3	38
22	Facilitated Ion Transport in Smectic Ordered Ionic Liquid Crystals. Advanced Materials, 2016, 28, 9301-9307.	21.0	36
23	CO ₂ Absorption and Desorption in an Aqueous Solution of Heavily Hindered Alkanolamine: Structural Elucidation of CO ₂ -Containing Species. Environmental Science & Environmental &	10.0	35
24	[Ru(phen)2DPPZ]2+ is in contact with DNA bases when it forms a luminescent complex with single-stranded oligonucleotides. Journal of Inorganic Biochemistry, 2005, 99, 994-1000.	3.5	32
25	Nitrile-functionalized tertiary amines as highly efficient and reversible SO2 absorbents. Journal of Hazardous Materials, 2014, 264, 136-143.	12.4	30
26	Multimodal porous carbon derived from ionic liquids: correlation between pore sizes and ionic clusters. Nanoscale, 2017, 9, 14672-14681.	5.6	30
27	Zwitterionic imidazolium compounds with high cathodic stability as additives for lithium battery electrolytes. Journal of Power Sources, 2008, 183, 303-309.	7.8	28
28	K3PO4-catalyzed carboxylation of amines to 1,3-disubstituted ureas: A mechanistic consideration. Applied Catalysis B: Environmental, 2014, 144, 317-324.	20.2	23
29	Non-Enzymatic Glucose Biosensor Based on Highly Pure TiO2 Nanoparticles. Biosensors, 2021, 11, 149.	4.7	23
30	lon transport behavior in polymerized imidazolium ionic liquids incorporating flexible pendant groups. European Polymer Journal, 2013, 49, 1017-1022.	5.4	22
31	Electrochemical Control of Ion Transport through a Mesoporous Carbon Membrane. Langmuir, 2014, 30, 3606-3611.	3.5	21
32	Polymer-supported chloroaluminate catalysts for the Diels–Alder reaction of cyclopentadiene with methyl methacrylate. Applied Catalysis A: General, 2007, 331, 34-38.	4.3	18
33	Effects of operational and geometrical conditions upon photosensitivity of amorphous InZnO thin film transistors. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, .	1.2	18
34	Decomposition of ethylene carbonate in the presence of ionic liquid-based zinc tetrahalide catalysts. Applied Catalysis A: General, 2005, 288, 48-52.	4.3	17
35	An efficient catalytic system for the carbomethoxylation of ethylene oxide. Applied Catalysis A: General, 2006, 301, 75-78.	4.3	16
36	Efficient catalytic systems for the carboxylation of diamines to cyclic ureas using ethylene urea as a promoter. Applied Catalysis B: Environmental, 2017, 209, 139-145.	20.2	16

#	Article	lF	CITATIONS
37	Efficient Non atalytic Carboxylation of Diamines to Cyclic Ureas Using 2â€Pyrrolidone as a Solvent and a Promoter. Advanced Synthesis and Catalysis, 2019, 361, 297-306.	4.3	15
38	Role of Alkyl Group in the Aromatic Extraction Using Pyridinium-Based Ionic Liquids. Journal of Physical Chemistry B, 2013, 117, 14827-14834.	2.6	14
39	Polymer-supported methylselenite for the oxidative carbonylation of aniline. Applied Catalysis A: General, 2007, 332, 65-69.	4.3	13
40	lonic cellulose-stabilized gold nanoparticles and their application in the catalytic reduction of 4-nitrophenol. RSC Advances, 2018, 8, 1758-1763.	3.6	13
41	Lithium–oxygen batteries with ester-functionalized ionic liquid-based electrolytes. RSC Advances, 2015, 5, 80014-80021.	3.6	12
42	Tailoring chemically converted graphenes using a water-soluble pyrene derivative with a zwitterionic arm for sensitive electrochemiluminescence-based analyses. Biosensors and Bioelectronics, 2017, 87, 89-95.	10.1	12
43	K3PO4-catalyzed carbonylation of amines to formamides. Applied Catalysis A: General, 2015, 506, 126-133.	4.3	11
44	Interdigitated Electrode Biosensor Based on Plasma-Deposited TiO2 Nanoparticles for Detecting DNA. Biosensors, 2021, 11, 212.	4.7	11
45	Isolation and Structural Characterization of Bicarbonate and Carbonate Species Formed During CO2 Absorption/Desorption By a Hindered Alkanolamine. Energy Procedia, 2014, 63, 2190-2198.	1.8	10
46	Nitrogenâ€Immobilized, Ionic Liquidâ€Derived, Nitrogenâ€Doped, Activated Carbon for Supercapacitors. ChemElectroChem, 2020, 7, 2410-2417.	3.4	10
47	Waterproof perovskites: high fluorescence quantum yield and stability from a methylammonium lead bromide/formate mixture in water. Journal of Materials Chemistry C, 2020, 8, 5873-5881.	5.5	9
48	One-pot synthesis of ethylene trithiocarbonate from ethylene carbonate. Applied Catalysis A: General, 2008, 337, 168-172.	4.3	8
49	Solventless Catalytic Etherification of Glycerol Using Acetate Salts as Efficient Catalysts. Bulletin of the Korean Chemical Society, 2018, 39, 722-725.	1.9	8
50	Evolution of Ion–Ion Interactions and Structures in Smectic Ionic Liquid Crystals. Journal of Physical Chemistry C, 2019, 123, 20547-20557.	3.1	8
51	Effect of ester group on the performance of zwitterionic imidazolium compounds as membrane materials for separating alkene/alkane mixtures. Journal of Membrane Science, 2008, 313, 344-352.	8.2	7
52	Imidazolium Chloride-LiCl Melts as Efficient Solvents for Cellulose. Bulletin of the Korean Chemical Society, 2013, 34, 3771-3776.	1.9	7
53	Mechanistic Investigation of the Isomerization of 5-Vinyl-2-norbornene. Journal of Organic Chemistry, 2006, 71, 911-914.	3.2	6
54	Ionic liquid-catalyzed selective production of hydrofluoroether: Synthesis of a third generation CFC alternative, CF3CH2OCHFCF2CF3. Applied Catalysis B: Environmental, 2009, 89, 137-141.	20.2	6

#	Article	IF	CITATIONS
55	High-purity core / shell structured nanoparticles synthesis using high-frequency plasma technology and atomic layer deposition. Vacuum, 2020, 179, 109556.	3.5	6
56	Lithium Chloride-Imidazolium Chloride Melts for the Coupling Reactions of Propylene Oxide and CO ₂ . Bulletin of the Korean Chemical Society, 2008, 29, 148-152.	1.9	6
57	Direct Etherification Reaction of Glycerol Using Alkali Metal Cation (Li+, Na+ and K+) Containing X-Type Zeolites as Heterogeneous Catalysts: Optimization of the Reaction Conditions. Catalysts, 2021, 11, 1323.	3.5	6
58	Ammonia Activation of Carbonized Polysaccharides and their Application for the Carbon Capture. Bulletin of the Korean Chemical Society, 2016, 37, 689-694.	1.9	5
59	Highly Active and Nonâ€corrosive Catalytic Systems for the Coupling Reactions of Ethylene Oxide and <scp>CO₂</scp> . Bulletin of the Korean Chemical Society, 2017, 38, 219-223.	1.9	5
60	lonic liquid-assisted hydroalkoxylation of hexafluoropropene with 2,2,2-trifluoroethanol: A mechanistic consideration. Journal of Catalysis, 2009, 262, 177-180.	6.2	4
61	Effect of Functionalized Ionic Liquids on the Stability of $V(acac) < sub > 3 < /sub >$. Bulletin of the Korean Chemical Society, 2018, 39, 1036-1040.	1.9	3
62	Positive Effect of Antagonistic Additives on the Homogeneous Catalytic Etherification Reaction of Glycerol. Catalysts, 2021, 11, 1000.	3.5	3
63	Metal-free, NH3-activated N-doped mesoporous nanocarbon electrocatalysts for the oxygen reduction reaction. Electrochemistry Communications, 2021, 129, 107092.	4.7	3
64	Preparation of Porous Carbons from Sugars and their Application for Carbon Capture. Bulletin of the Korean Chemical Society, 2015, 36, 1126-1129.	1.9	3
65	Preparation of Porous Carbons Under Basic Condition by Soft Template Method for Carbon Capture. Bulletin of the Korean Chemical Society, 2015, 36, 1384-1389.	1.9	2
66	Selective removal of alkynes from diene mixtures using ether-functionalized Cu(i)-containing ionic liquids as extractants. Physical Chemistry Chemical Physics, 2017, 19, 2168-2174.	2.8	2
67	Ionic Liquids Containing 1,1-Dicyano-1-acetylmethanide Anion as Potential Electrolytes. Bulletin of the Korean Chemical Society, 2012, 33, 2999-3003.	1.9	2
68	Tuning the Catalytic Activity of Recyclable Heterogeneous Catalysts for the Direct Etherification Reaction of Glycerol Using Antagonistic Additives. Catalysts, 2022, 12, 220.	3.5	2
69	Crystal Structure of Tetraethylammonium Dichloro[1,2-bis(2-pyridine-2-carboxamido)benzene]cobalt(III) Monohydrate. Analytical Sciences: X-ray Structure Analysis Online, 2004, 20, X123-X124.	0.1	1
70	Ionic Liquid Composite Polymer Electrolyte Membranes for the Unhumidified Intermediate Temperature Fuel Cell. ECS Transactions, 2006, 3, 55-62.	0.5	1
71	Liquid Crystals: Facilitated Ion Transport in Smectic Ordered Ionic Liquid Crystals (Adv. Mater.) Tj ETQq1 1 0.784	314 rgBT /	Oyerlock 10
72	Association between Promoter Hypermethylation of the p16INK4a and hTERT Genes and Their Protein Expressions in Human Breast Cancer. Journal of Breast Cancer, 2007, 10, 59.	1.9	0