
Kentaro Nakano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/48051/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pom1 DYRK Regulates Localization of the Rga4 GAP to Ensure Bipolar Activation of Cdc42 in Fission Yeast. Current Biology, 2008, 18, 322-330.	1.8	160
2	The small GTPase Rho3 and the diaphanous/formin For3 function in polarized cell growth in fission yeast. Journal of Cell Science, 2002, 115, 4629-4639.	1.2	104
3	<i>Schizosaccharomyces pombe</i> Rho2p GTPase Regulates Cell Wall α-Glucan Biosynthesis through the Protein Kinase Pck2p. Molecular Biology of the Cell, 2000, 11, 4393-4401.	0.9	89
4	The small GTP-binding protein Rho1 is a multifunctional protein that regulates actin localization, cell polarity, and septum formation in the fission yeastSchizosaccharomyces pombe. Genes To Cells, 1997, 2, 679-694.	0.5	86
5	Actin-depolymerizing Protein Adf1 Is Required for Formation and Maintenance of the Contractile Ring during Cytokinesis in Fission Yeast. Molecular Biology of the Cell, 2006, 17, 1933-1945.	0.9	84
6	Identification of Myo3, a second type-II myosin heavy chain in the fission yeastSchizosaccharomyces pombe. FEBS Letters, 1997, 420, 161-166.	1.3	81
7	Interactions among a Fimbrin, a Capping Protein, and an Actin-depolymerizing Factor in Organization of the Fission Yeast Actin Cytoskeleton. Molecular Biology of the Cell, 2001, 12, 3515-3526.	0.9	80
8	Subcellular localization and possible function of actin, tropomyosin and actin-related protein 3 (Arp3) in the fission yeast Schizosaccharomyces pombe. European Journal of Cell Biology, 1998, 76, 288-295.	1.6	76
9	Dividing the spoils of growth and the cell cycle: The fission yeast as a model for the study of cytokinesis. Cytoskeleton, 2011, 68, 69-88.	1.0	60
10	The small GTPase Rho4 is involved in controlling cell morphology and septation in fission yeast. Genes To Cells, 2003, 8, 357-370.	0.5	51
11	Rho1-GEFs Rgf1 and Rgf2 are involved in formation of cell wall and septum, while Rgf3 is involved in cytokinesis in fission yeast. Genes To Cells, 2005, 10, 1189-1202.	0.5	51
12	Fission yeast IQGAP arranges actin filaments into the cytokinetic contractile ring. EMBO Journal, 2009, 28, 3117-3131.	3.5	48
13	Characterization of GTPase-activating proteins for the function of the Rho-family small GTPases in the fission yeastSchizosaccharomyces pombe. Genes To Cells, 2001, 6, 1031-1042.	0.5	42
14	Localization of Rho GTPase in sea urchin eggs. FEBS Letters, 1998, 441, 121-126.	1.3	41
15	Identification and functional analysis of the gene for type I myosin in fission yeast. Genes To Cells, 2001, 6, 187-199.	0.5	41
16	Rho-dependence of Schizosaccharomyces pombe Pck2. Genes To Cells, 2000, 5, 17-27.	0.5	36
17	Isolation and sequencing of two cDNA clones encoding Rho proteins from the fission yeast schizosaccharomyces pombe. Gene, 1995, 155, 119-122.	1.0	32
18	GMF is an evolutionarily developed Adf/cofilinâ€super family protein involved in the Arp2/3 complexâ€mediated organization of the actin cytoskeleton. Cytoskeleton, 2010, 67, 373-382.	1.0	32

Kentaro Nakano

#	Article	IF	CITATIONS
19	Pob1 Ensures Cylindrical Cell Shape by Coupling Two Distinct Rho Signaling Events During Secretory Vesicle Targeting. Traffic, 2011, 12, 726-739.	1.3	30
20	Marked Amplification and Diversification of Products of <i>ras</i> Genes from Rat Brain, Rab GTPases, in the Ciliates <i>Tetrahymena thermophila</i> and <i>Paramecium tetraurelia</i> . Journal of Eukaryotic Microbiology, 2010, 57, 389-399.	0.8	29
21	Actin-capping protein is involved in controlling organization of actin cytoskeleton together with ADF/cofilin, profilin and F-actin crosslinking proteins in fission yeast. Genes To Cells, 2006, 11, 893-905.	0.5	28
22	Axonemal dynein light chain-1 locates at the microtubule-binding domain of the Î ³ heavy chain. Molecular Biology of the Cell, 2015, 26, 4236-4247.	0.9	26
23	An actin–myosin-II interaction is involved in maintaining the contractile ring in fission yeast. Journal of Cell Science, 2015, 128, 2903-18.	1.2	24
24	Advances in Cytokinesis Research. Contractile Ring Formation in Xenopus Egg and Fission Yeast Cell Structure and Function, 2001, 26, 545-554.	0.5	19
25	Fission yeast <scp>IQGAP</scp> maintains <scp>F</scp> â€actinâ€independent localization of myosinâ€ <scp>II</scp> in the contractile ring. Genes To Cells, 2014, 19, 161-176.	0.5	18
26	Small GTPase Rho5 is a functional homologue of Rho1, which controls cell shape and septation in fission yeast. FEBS Letters, 2005, 579, 5181-5186.	1.3	17
27	Stg1 is a novel SM22/transgelin-like actin-modulating protein in fission yeast. FEBS Letters, 2005, 579, 6311-6316.	1.3	16
28	Geranylgeranyltransferase <scp>C</scp> wg2â€Rho4/Rho5 module is implicated in the <scp>P</scp> mk1 <scp>MAP</scp> kinaseâ€mediated cell wall integrity pathway in fission yeast. Genes To Cells, 2015, 20, 310-323.	0.5	16
29	Amitosis requires γâ€ŧubulinâ€mediated microtubule assembly in <i>Tetrahymena thermophila</i> . Cytoskeleton, 2011, 68, 89-96.	1.0	15
30	Unique sequences and predicted functions of myosins in Tetrahymena thermophila. Gene, 2011, 480, 10-20.	1.0	14
31	The roles of actin cytoskeleton and microtubules for membrane recycling of a food vacuole in <i>Tetrahymena thermophila</i> . Cytoskeleton, 2009, 66, 371-377.	4.4	13
32	Usual and unusual biochemical properties of ADF/cofilin-like protein Adf73p in ciliate Tetrahymena thermophila. Biochemical and Biophysical Research Communications, 2009, 390, 54-59.	1.0	8
33	Formation and Ingression of Division Furrow Can Progress Under the Inhibitory Condition of Actin Polymerization in Ciliate Tetrahymena pyriformis. Zoological Science, 2013, 30, 1044.	0.3	8
34	Dynamic Change of Cellular Localization of Microtubule-Organizing Center During Conjugation of Ciliate Tetrahymena thermophila. Zoological Science, 2015, 32, 25.	0.3	8
35	ADF/Cofilin Is Not Essential but Is Critically Important for Actin Activities during Phagocytosis in Tetrahymena thermophila. Eukaryotic Cell, 2013, 12, 1080-1086.	3.4	7
36	Cell cycle-dependent phosphorylation of IQGAP is involved in assembly and stability of the contractile ring in fission yeast. Biochemical and Biophysical Research Communications, 2021, 534, 1026-1032.	1.0	7

Kentaro Nakano

#	Article	IF	CITATIONS
37	Kinesinâ€14 is Important for Chromosome Segregation During Mitosis and Meiosis in the Ciliate <i>Tetrahymena thermophila</i> . Journal of Eukaryotic Microbiology, 2017, 64, 293-307.	0.8	6
38	Black Tea High-Molecular-Weight Polyphenol Increases the Motility of Sea Urchin Sperm by Activating Mitochondrial Respiration. Bioscience, Biotechnology and Biochemistry, 2012, 76, 2321-2324.	0.6	4
39	The meiosis-specific nuclear passenger protein is required for proper assembly of forespore membrane in fission yeast. Journal of Cell Science, 2014, 127, 4429-42.	1.2	4
40	Anillinâ€related protein Mid1 regulates timely formation of the contractile ring in the fission yeast <i>Schizosaccharomyces japonicus</i> . Genes To Cells, 2016, 21, 594-607.	0.5	4
41	Molecular dissection of the actin-binding ability of the fission yeast α-actinin, Ain1, in vitro and in vivo. Journal of Biochemistry, 2017, 162, 93-102.	0.9	3
42	Molecular Mechanism for the Actin-Binding Domain of α-Actinin Ain1 Elucidated by Molecular Dynamics Simulations and Mutagenesis Experiments. Journal of Physical Chemistry B, 2020, 124, 8495-8503.	1.2	3
43	Deletion of gmfA induces keratocyteâ€like migration in Dictyostelium. FEBS Open Bio, 2021, , .	1.0	2