Fan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4804885/publications.pdf

Version: 2024-02-01

		393982	329751
86	2,036	19	37
papers	citations	h-index	g-index
95	95	95	1879
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	White matter tractography for neurosurgical planning: A topography-based review of the current state of the art. NeuroImage: Clinical, 2017, 15, 659-672.	1.4	162
2	An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan. NeuroImage, 2018, 179, 429-447.	2.1	146
3	Multimodal neuroimaging computing: a review of the applications in neuropsychiatric disorders. Brain Informatics, 2015, 2, 167-180.	1.8	115
4	Automated white matter fiber tract identification in patients with brain tumors. Neurolmage: Clinical, 2017, 13, 138-153.	1.4	109
5	Quantitative mapping of the brain's structural connectivity using diffusion MRI tractography: A review. Neurolmage, 2022, 249, 118870.	2.1	95
6	Tractography dissection variability: What happens when 42 groups dissect 14 white matter bundles on the same dataset?. NeuroImage, 2021, 243, 118502.	2.1	94
7	SlicerDMRI: Open Source Diffusion MRI Software for Brain Cancer Research. Cancer Research, 2017, 77, e101-e103.	0.4	89
8	Whole brain white matter connectivity analysis using machine learning: An application to autism. NeuroImage, 2018, 172, 826-837.	2.1	70
9	Support vector regression. , 2020, , 123-140.		67
10	Test–retest reproducibility of white matter parcellation using diffusion MRI tractography fiber clustering. Human Brain Mapping, 2019, 40, 3041-3057.	1.9	61
11	Deep white matter analysis (DeepWMA): Fast and consistent tractography segmentation. Medical Image Analysis, 2020, 65, 101761.	7.0	57
12	SlicerDMRI: Diffusion MRI and Tractography Research Software for Brain Cancer Surgery Planning and Visualization. JCO Clinical Cancer Informatics, 2020, 4, 299-309.	1.0	52
13	Unsupervised Instance Segmentation in Microscopy Images via Panoptic Domain Adaptation and Task Re-Weighting. , 2020, , .		49
14	PDAM: A Panoptic-Level Feature Alignment Framework for Unsupervised Domain Adaptive Instance Segmentation in Microscopy Images. IEEE Transactions on Medical Imaging, 2021, 40, 154-165.	5.4	46
15	Corticospinal tract modeling for neurosurgical planning by tracking through regions of peritumoral edema and crossing fibers using two-tensor unscented Kalman filter tractography. International Journal of Computer Assisted Radiology and Surgery, 2016, 11, 1475-1486.	1.7	42
16	Free water modeling of peritumoral edema using multi-fiber tractography: Application to tracking the arcuate fasciculus for neurosurgical planning. PLoS ONE, 2018, 13, e0197056.	1.1	40
17	Deep learning based segmentation of brain tissue from diffusion MRI. NeuroImage, 2021, 233, 117934.	2.1	36
18	Nuclei Segmentation via a Deep Panoptic Model with Semantic Feature Fusion. , 2019, , .		36

#	Article	IF	CITATIONS
19	Investigation into local white matter abnormality in emotional processing and sensorimotor areas using an automatically annotated fiber clustering in major depressive disorder. NeuroImage, 2018, 181, 16-29.	2.1	34
20	A comparison of three fiber tract delineation methods and their impact on white matter analysis. NeuroImage, 2018, 178, 318-331.	2.1	32
21	Locally-Transferred Fisher Vectors for Texture Classification. , 2017, , .		31
22	Dictionary pruning with visual word significance for medical image retrieval. Neurocomputing, 2016, 177, 75-88.	3.5	27
23	Suprathreshold fiber cluster statistics: Leveraging white matter geometry to enhance tractography statistical analysis. Neurolmage, 2018, 171, 341-354.	2.1	26
24	Anatomical assessment of trigeminal nerve tractography using diffusion MRI: A comparison of acquisition b-values and single- and multi-fiber tracking strategies. Neurolmage: Clinical, 2020, 25, 102160.	1.4	25
25	Multimodal neuroimaging computing: the workflows, methods, and platforms. Brain Informatics, 2015, 2, 181-195.	1.8	22
26	Patient-specific connectomic models correlate with, but do not reliably predict, outcomes in deep brain stimulation for obsessive-compulsive disorder. Neuropsychopharmacology, 2022, 47, 965-972.	2.8	22
27	Neuroimaging auditory verbal hallucinations in schizophrenia patient and healthy populations. Psychological Medicine, 2020, 50, 403-412.	2.7	21
28	Comparison of multiple tractography methods for reconstruction of the retinogeniculate visual pathway using diffusion MRI. Human Brain Mapping, 2021, 42, 3887-3904.	1.9	21
29	Pairwise Latent Semantic Association for Similarity Computation in Medical Imaging. IEEE Transactions on Biomedical Engineering, 2016, 63, 1058-1069.	2.5	19
30	Improving the predictive potential of diffusion <scp>MRI</scp> in schizophrenia using normative modelsâ€"Towards subjectâ€evel classification. Human Brain Mapping, 2021, 42, 4658-4670.	1.9	18
31	White matter association tracts underlying language and theory of mind: An investigation of 809 brains from the Human Connectome Project. Neurolmage, 2022, 246, 118739.	2.1	18
32	Creation of a novel trigeminal tractography atlas for automated trigeminal nerve identification. Neurolmage, 2020, 220, 117063.	2.1	17
33	Image Registration to Compensate for EPI Distortion in Patients with Brain Tumors: An Evaluation of Tractâ€ 5 pecific Effects. Journal of Neuroimaging, 2018, 28, 173-182.	1.0	15
34	MK-curve - Characterizing the relation between mean kurtosis and alterations in the diffusion MRI signal. Neurolmage, 2019, 196, 68-80.	2.1	15
35	White matter changes in psychosis risk relate to development and are not impacted by the transition to psychosis. Molecular Psychiatry, 2021, 26, 6833-6844.	4.1	15
36	Increased extracellular fluid is associated with white matter fiber degeneration in CADASIL: in vivo evidence from diffusion magnetic resonance imaging. Fluids and Barriers of the CNS, 2021, 18, 29.	2.4	15

#	Article	IF	CITATIONS
37	Investigation of local white matter abnormality in Parkinson's disease by using an automatic fiber tract parcellation. Behavioural Brain Research, 2020, 394, 112805.	1.2	14
38	Genetic load determines atrophy in hand corticoâ€striatal pathways in presymptomatic Huntington's disease. Human Brain Mapping, 2018, 39, 3871-3883.	1.9	13
39	3D Exploration of the Brainstem in 50-Micron Resolution MRI. Frontiers in Neuroanatomy, 2020, 14, 40.	0.9	13
40	Miswiring of Frontostriatal Projections in Schizophrenia. Schizophrenia Bulletin, 2020, 46, 990-998.	2.3	12
41	Longitudinal brain MR retrieval with diffeomorphic demons registration: What happened to those patients with similar changes?. , 2015, , .		11
42	Older age, male sex, and cerebral microbleeds predict white matter loss after traumatic brain injury. GeroScience, 2022, 44, 83-102.	2.1	11
43	Deep White Matter Analysis: Fast, Consistent Tractography Segmentation Across Populations and dMRI Acquisitions. Lecture Notes in Computer Science, 2019, 11766, 599-608.	1.0	10
44	Deep Diffusion MRI Registration (DDMReg): A Deep Learning Method for Diffusion MRI Registration. IEEE Transactions on Medical Imaging, 2022, 41, 1454-1467.	5.4	10
45	DSNet: A Dual-Stream Framework for Weakly-Supervised Gigapixel Pathology Image Analysis. IEEE Transactions on Medical Imaging, 2022, 41, 2180-2190.	5.4	10
46	Bone texture characterization with fisher encoding of local descriptors. , 2015, , .		9
47	Deep Fiber Clustering: Anatomically Informed Unsupervised Deep Learning for Fast and Effective White Matter Parcellation. Lecture Notes in Computer Science, 2021, , 497-507.	1.0	9
48	Fiber clustering based white matter connectivity analysis for prediction of Autism Spectrum Disorder using diffusion tensor imaging. , 2016, , .		8
49	Biological impact of nanodiamond particles $\hat{a}\in$ label free, high-resolution methods for nanotoxicity assessment. Nanotoxicology, 2019, 13, 1210-1226.	1.6	8
50	Acquiring and Predicting Multidimensional Diffusion (MUDI) Data: An Open Challenge. Mathematics and Visualization, 2020, , 195-208.	0.4	8
51	Comparison between two white matter segmentation strategies: An investigation into white matter segmentation consistency., 2017,,.		7
52	MK-Curve improves sensitivity to identify white matter alterations in clinical high risk for psychosis. NeuroImage, 2021, 226, 117564.	2.1	7
53	Celltrack R-CNN: A Novel End-To-End Deep Neural Network For Cell Segmentation And Tracking In Microscopy Images. , 2021, , .		7
54	Sex-Related Differences in White Matter Asymmetry and Its Implications for Verbal Working Memory in Psychosis High-Risk State. Frontiers in Psychiatry, 2021, 12, 686967.	1.3	7

#	Article	IF	CITATIONS
55	Exposure to Repetitive Head Impacts Is Associated With Corpus Callosum Microstructure and Plasma Total Tau in Former Professional American Football Players. Journal of Magnetic Resonance Imaging, 2021, 54, 1819-1829.	1.9	7
56	3D Large Kernel Anisotropic Network for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2018, , 444-454.	1.0	7
57	OUP accepted manuscript. Cerebral Cortex, 2022, , .	1.6	7
58	Fusing subcategory probabilities for texture classification., 2015,,.		6
59	Ranking-Based Vocabulary Pruning in Bag-of-Features for Image Retrieval. Lecture Notes in Computer Science, 2015, , 436-445.	1.0	6
60	Automated connectivity-based groupwise cortical atlas generation: Application to data of neurosurgical patients with brain tumors for cortical parcellation prediction., 2017,,.		5
61	Post-Traumatic Cerebral Microhemorrhages and their Effects Upon White Matter Connectivity in the Aging Human Brain., 2019, 2019, 198-203.		4
62	Content-Based Retrieval of Brain Diffusion Magnetic Resonance Image. Lecture Notes in Computer Science, 2015, , 54-60.	1.0	4
63	Text- and Content-Based Medical Image Retrieval in the VISCERAL Retrieval Benchmark. , 2017, , 237-249.		4
64	Opposing white matter microstructure abnormalities in 22q11.2 deletion and duplication carriers. Translational Psychiatry, 2021, 11, 580.	2.4	4
65	Case Report: The Imperfect Association Between Craniofacial Lesion Burden and Pain in Fibrous Dysplasia. Frontiers in Neurology, 2022, 13, 855157.	1.1	4
66	Clique Identification and Propagation for Multimodal Brain Tumor Image Segmentation. Lecture Notes in Computer Science, 2016, , 285-294.	1.0	3
67	FiberStars: Visual Comparison of Diffusion Tractography Data between Multiple Subjects. , 2021, , .		3
68	TRAKO: Efficient Transmission of Tractography Data for Visualization. Lecture Notes in Computer Science, 2020, 12267, 322-332.	1.0	3
69	USYD/HES-SO in the VISCERAL RetrievalÂBenchmark. Lecture Notes in Computer Science, 2015, , 139-143.	1.0	3
70	Efficient 3D Depthwise and Separable Convolutions with Dilation for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2019, , 563-573.	1.0	3
71	Superficial white matter microstructure affects processing speed in cerebral small vessel disease. Human Brain Mapping, 2022, 43, 5310-5325.	1.9	3
72	Latent Semantic Association for Medical Image Retrieval. , 2014, , .		2

#	Article	IF	Citations
73	Mapping Cerebral Connectivity Changes after Mild Traumatic Brain Injury in Older Adults Using Diffusion Tensor Imaging and Riemannian Matching of Elastic Curves. , 2020, , .		2
74	Abstract 64: Diffusion Tensor Imaging Suggests Decreased Axonal Myelination In Children With Moyamoya Without Stroke. Stroke, 2022, 53, .	1.0	2
75	Beating cilia identification in fluorescence microscope images for accurate CBF measurement., 2015,,.		1
76	Dual discriminative local coding for tissue aging analysis. Medical Image Analysis, 2017, 38, 65-76.	7.0	1
77	Connectivity-based Cortical Parcellation via Contrastive Learning on Spatial-Graph Convolution. BME Frontiers, 2022, 2022, .	2.2	1
78	Texture analysis of tissue aging using global and cluster constrained local coding., 2016,,.		0
79	T201. THE STUDY OF WHITE MATTER MATURATION IN THREE POPULATIONS OF GENETIC HIGH RISK FOR SCHIZOPHRENIA INDIVIDUALS SPANNING THE DEVELOPMENTAL TIMELINE. Schizophrenia Bulletin, 2018, 44, S194-S195.	2.3	O
80	T14. FUNCTIONAL AND STRUCTURAL CONNECTIVITY IN SUBJECTS AT HIGH RISK FOR PSYCHOSIS AS A POSSIBLE BIOMARKER FOR THEIR TRANSITION TO SCHIZOPHRENIA – A COMBINED EEG AND DTI STUDY. Schizophrenia Bulletin, 2019, 45, S208-S209.	2.3	0
81	T86. DIFFUSION MAGNETIC RESONANCE IMAGING FIBER CLUSTER ANALYSIS OF THE ANATOMIC ORGANIZATION OF FRONTOSTRIATAL STRUCTURAL CONNECTIVITY IN HEALTHY SUBJECTS. Schizophrenia Bulletin, 2019, 45, S236-S237.	2.3	O
82	Frontostriatal Brain Wiring Organization in Male and Female Healthy Subjects Using a Novel Diffusion Imaging Fiber Cluster Analysis. Biological Psychiatry, 2020, 87, S290.	0.7	0
83	An MRI Diffusion Imaging Tractography Study of the Organization of Frontostriatal White Matter Connectivity in Male and Female Healthy Subjects. Biological Psychiatry, 2021, 89, S366.	0.7	O
84	Characterizing Extracellular White Matter Pathologies Using Free Water Imaging Across the Schizophrenia Illness Course: A Multi-Site Harmonized Diffusion MRI Study. Biological Psychiatry, 2021, 89, S85.	0.7	0
85	Supra-Threshold Fiber Cluster Statistics for Data-Driven Whole Brain Tractography Analysis. Lecture Notes in Computer Science, 2017, , 556-565.	1.0	O
86	Spatial Sparse Estimation of Fiber Orientation Distribution Using Deep Alternating Directions Method of Multipliers Network. Mathematics and Visualization, 2020, , 79-89.	0.4	0