Gerold Schuler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4804473/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A One-Armed Phase I Dose Escalation Trial Design: Personalized Vaccination with IKKÎ ² -Matured, RNA-Loaded Dendritic Cells for Metastatic Uveal Melanoma. Frontiers in Immunology, 2022, 13, 785231.	2.2	9
2	Plasma-derived extracellular vesicles discriminate type-1 allergy subjects from non-allergic controls. World Allergy Organization Journal, 2021, 14, 100583.	1.6	6
3	A Chimeric IL-15/IL-15Rα Molecule Expressed on NFκB-Activated Dendritic Cells Supports Their Capability to Activate Natural Killer Cells. International Journal of Molecular Sciences, 2021, 22, 10227.	1.8	5
4	BRAF and MEK Inhibitors Affect Dendritic-Cell Maturation and T-Cell Stimulation. International Journal of Molecular Sciences, 2021, 22, 11951.	1.8	8
5	Safety and tolerability of a single infusion of autologous ex vivo expanded regulatory T cells in adults with ulcerative colitis (ER-TREG 01): protocol of a phase 1, open-label, fast-track dose-escalation clinical trial. BMJ Open, 2021, 11, e049208.	0.8	9
6	Merkel Cell Carcinoma of the Head and Neck Compared to Other Anatomical Sites in a Real-World Setting: Importance of Surgical Therapy for Facial Tumors. Facial Plastic Surgery, 2020, 36, 249-254.	0.5	3
7	Blood Eosinophilia Is an on-Treatment Biomarker in Patients with Solid Tumors Undergoing Dendritic Cell Vaccination with Autologous Tumor-RNA. Pharmaceutics, 2020, 12, 210.	2.0	5
8	Therapeutic Cancer Vaccination with Ex Vivo RNA-Transfected Dendritic Cells—An Update. Pharmaceutics, 2020, 12, 92.	2.0	46
9	Clinical-Scale Production of CAR-T Cells for the Treatment of Melanoma Patients by mRNA Transfection of a CSPG4-Specific CAR under Full GMP Compliance. Cancers, 2019, 11, 1198.	1.7	46
10	Automated Good Manufacturing Practice–compliant generation of human monocyte-derived dendritic cells from a complete apheresis product using a hollow-fiber bioreactor system overcomes a major hurdle in the manufacture of dendritic cells for cancer vaccines. Cytotherapy, 2019, 21, 1166-1178.	0.3	10
11	Curatopes Melanoma: A Database of Predicted T-cell Epitopes from Overly Expressed Proteins in Metastatic Cutaneous Melanoma. Cancer Research, 2019, 79, 5452-5456.	0.4	3
12	Arming T Cells with a gp100-Specific TCR and a CSPG4-Specific CAR Using Combined DNA- and RNA-Based Receptor Transfer. Cancers, 2019, 11, 696.	1.7	23
13	CSPG4-Specific CAR T Cells for High-Risk Childhood B Cell Precursor Leukemia. International Journal of Molecular Sciences, 2019, 20, 2764.	1.8	20
14	Enhancing lentiviral transduction to generate melanoma-specific human T cells for cancer immunotherapy. Journal of Immunological Methods, 2019, 472, 55-64.	0.6	17
15	Eosinophil-cationic protein - a novel liquid prognostic biomarker in melanoma. BMC Cancer, 2019, 19, 207.	1.1	21
16	NF-κB activation triggers NK-cell stimulation by monocyte-derived dendritic cells. Therapeutic Advances in Medical Oncology, 2019, 11, 175883591989162.	1.4	20
17	Senescence markers: Predictive for response to checkpoint inhibitors. International Journal of Cancer, 2019, 144, 1147-1150.	2.3	31
18	Myositis and neuromuscular side-effects induced by immune checkpoint inhibitors. European Journal of Cancer, 2019, 106, 12-23.	1.3	171

#	Article	IF	CITATIONS
19	Innate extracellular vesicles from melanoma patients suppress β-catenin in tumor cells by miRNA-34a. Life Science Alliance, 2019, 2, e201800205.	1.3	22
20	The si <scp>RNA</scp> â€mediated downregulation of <scp>PD</scp> â€1 alone or simultaneously with <scp>CTLA</scp> â€4 shows enhanced in vitro <scp>CAR</scp> â€Tâ€cell functionality for further clinical development towards the potential use in immunotherapy of melanoma. Experimental Dermatology, 2018, 27, 769-778.	1.4	51
21	Can checkpoint inhibitor therapy improve response to chemotherapy?. Journal of Cancer Research and Clinical Oncology, 2018, 144, 183-185.	1.2	1
22	Automated closed-system manufacturing of human monocyte-derived dendritic cells for cancer immunotherapy. Journal of Immunological Methods, 2018, 463, 89-96.	0.6	11
23	MEK inhibition may increase survival of NRAS-mutated melanoma patients treated with checkpoint blockade: Results of a retrospective multicentre analysis of 364 patients. European Journal of Cancer, 2018, 98, 10-16.	1.3	57
24	BRAF and MEK Inhibitors Influence the Function of Reprogrammed T Cells: Consequences for Adoptive T-Cell Therapy. International Journal of Molecular Sciences, 2018, 19, 289.	1.8	16
25	The Generation of CAR-Transfected Natural Killer T Cells for the Immunotherapy of Melanoma. International Journal of Molecular Sciences, 2018, 19, 2365.	1.8	53
26	Real world experience in low-dose ipilimumab in combination with PD-1 blockade in advanced melanoma patients. Oncotarget, 2018, 9, 28903-28909.	0.8	37
27	Extracellular vesicles from mature dendritic cells (DC) differentiate monocytes into immature DC. Life Science Alliance, 2018, 1, e201800093.	1.3	21
28	Eosinophilic count as a biomarker for prognosis of melanoma patients and its importance in the response to immunotherapy. Immunotherapy, 2017, 9, 115-121.	1.0	104
29	Multiepitope tissue analysis reveals SPPL3-mediated ADAM10 activation as a key step in the transformation of melanocytes. Science Signaling, 2017, 10, .	1.6	21
30	RNA-transfection of γ/δT cells with a chimeric antigen receptor or an α/β T-cell receptor: a safer alternative to genetically engineered α/β T cells for the immunotherapy of melanoma. BMC Cancer, 2017, 17, 551.	1.1	87
31	Block Excision of Iridociliary Tumors Enables Molecular Profiling and Immune Vaccination. Ophthalmology, 2017, 124, 268-270.	2.5	14
32	Good Manufacturing Practice-Compliant Production and Lot-Release of Ex Vivo Expanded Regulatory T Cells As Basis for Treatment of Patients with Autoimmune and Inflammatory Disorders. Frontiers in Immunology, 2017, 8, 1371.	2.2	20
33	GM-CSF Monocyte-Derived Cells and Langerhans Cells As Part of the Dendritic Cell Family. Frontiers in Immunology, 2017, 8, 1388.	2.2	66
34	Twelve-year survival and immune correlates in dendritic cell–vaccinated melanoma patients. JCI Insight, 2017, 2, .	2.3	77
35	Survival of metastatic melanoma patients after dendritic cell vaccination correlates with expression of leukocyte phosphatidylethanolamine-binding protein 1/Raf kinase inhibitory protein. Oncotarget, 2017, 8, 67439-67456.	0.8	15
36	Comparison of the Serum Tumor Markers S100 and Melanoma-inhibitory Activity (MIA) in the Monitoring of Patients with Metastatic Melanoma Receiving Vaccination Immunotherapy with Dendritic Cells. Anticancer Research, 2017, 37, 5033-5037.	0.5	6

#	Article	IF	CITATIONS
37	Sarcoidosis Under Dendritic Cell Vaccination Immunotherapy in Long-term Responding Patients with Metastatic Melanoma. Anticancer Research, 2017, 37, 3243-3248.	0.5	5
38	Factors Influencing Disease Progression in Patients with Head and Neck Melanoma. Anticancer Research, 2017, 37, 3811-3816.	0.5	2
39	Combining a chimeric antigen receptor and a conventional Tâ€cell receptor to generate T cells expressing two additional receptors (<scp>TETAR</scp> s) for a multiâ€hit immunotherapy of melanoma. Experimental Dermatology, 2016, 25, 872-879.	1.4	27
40	Model-based genotype-phenotype mapping used to investigate gene signatures of immune sensitivity and resistance in melanoma micrometastasis. Scientific Reports, 2016, 6, 24967.	1.6	19
41	HIV Nef- and Notch1-dependent Endocytosis of ADAM17 Induces Vesicular TNF Secretion in Chronic HIV Infection. EBioMedicine, 2016, 13, 294-304.	2.7	38
42	Neurological, respiratory, musculoskeletal, cardiac and ocular side-effects of anti-PD-1 therapy. European Journal of Cancer, 2016, 60, 210-225.	1.3	490
43	Cutaneous, gastrointestinal, hepatic, endocrine, and renal side-effects of anti-PD-1 therapy. European Journal of Cancer, 2016, 60, 190-209.	1.3	546
44	Combined low-dose ipilimumab and pembrolizumab after sequential ipilimumab and pembrolizumab failure in advanced melanoma. European Journal of Cancer, 2016, 65, 182-184.	1.3	33
45	HIV-Nef and ADAM17-Containing Plasma Extracellular Vesicles Induce and Correlate with Immune Pathogenesis in Chronic HIV Infection. EBioMedicine, 2016, 6, 103-113.	2.7	80
46	Differential effects of α4β7 and GPR15 on homing of effector and regulatory T cells from patients with UC to the inflamed gut in vivo. Gut, 2016, 65, 1642-1664.	6.1	138
47	Electroporated Antigen-Encoding mRNA Is Not a Danger Signal to Human Mature Monocyte-Derived Dendritic Cells. Journal of Immunology Research, 2015, 2015, 1-9.	0.9	9
48	Generation of CD8 ⁺ T cells expressing two additional T-cell receptors (TETARs) for personalised melanoma therapy. Cancer Biology and Therapy, 2015, 16, 1323-1331.	1.5	20
49	Stability and activity of MCSP-specific chimeric antigen receptors (CARs) depend on the scFv antigen-binding domain and the protein backbone. Cancer Immunology, Immunotherapy, 2015, 64, 1623-1635.	2.0	39
50	Human Adenovirus-Specific γ/δ and CD8+ T Cells Generated by T-Cell Receptor Transfection to Treat Adenovirus Infection after Allogeneic Stem Cell Transplantation. PLoS ONE, 2014, 9, e109944.	1.1	23
51	Concurrent interaction of DCs with CD4 ⁺ and CD8 ⁺ T cells improves secondary CTL expansion: It takes three to tango. European Journal of Immunology, 2014, 44, 3543-3559.	1.6	32
52	Triggering of NFâ€ÎºB in cytokineâ€matured human DCs generates superior DCs for Tâ€cell priming in cancer immunotherapy. European Journal of Immunology, 2014, 44, 3413-3428.	1.6	25
53	A GMP-compliant protocol to expand and transfect cancer patient T cells with mRNA encoding a tumor-specific chimeric antigen receptor. Cancer Immunology, Immunotherapy, 2014, 63, 999-1008.	2.0	40
54	HIV Nef, Paxillin, and Pak1/2 Regulate Activation and Secretion of TACE/ADAM10 Proteases. Molecular Cell, 2013, 49, 668-679.	4.5	83

#	Article	IF	CITATIONS
55	Nonviral RNA Transfection to Transiently Modify T Cells with Chimeric Antigen Receptors for Adoptive Therapy. Methods in Molecular Biology, 2013, 969, 187-201.	0.4	44
56	Dendritic Cells. Cancer Journal (Sudbury, Mass), 2011, 17, 337-342.	1.0	7
57	Human T cells expressing two additional receptors (TETARs) specific for HIV-1 recognize both epitopes. Blood, 2011, 118, 5174-5177.	0.6	14
58	Targeting of DEC-205 on human dendritic cells results in efficient MHC class II–restricted antigen presentation. Blood, 2010, 116, 2277-2285.	0.6	111
59	Dendritic cells in cancer immunotherapy. European Journal of Immunology, 2010, 40, 2123-2130.	1.6	100
60	The CD4+ T-Cell Response of Melanoma Patients to a MAGE-A3 Peptide Vaccine Involves Potential Regulatory T Cells. Cancer Research, 2009, 69, 4335-4345.	0.4	85
61	Introduction of functional chimeric E/L-selectin by RNA electroporation to target dendritic cells from blood to lymph nodes. Cancer Immunology, Immunotherapy, 2008, 57, 467-477.	2.0	33
62	Functions of Anti-MAGE T-Cells Induced in Melanoma Patients under Different Vaccination Modalities. Cancer Research, 2008, 68, 3931-3940.	0.4	58
63	Effective Clinical-scale Production of Dendritic Cell Vaccines by Monocyte Elutriation Directly in Medium, Subsequent Culture in Bags and Final Antigen Loading Using Peptides or RNA Transfection. Journal of Immunotherapy, 2007, 30, 663-674.	1.2	51
64	Immunotherapy of malignant melanoma – Basic principles and novel therapeutic approaches. JDDG - Journal of the German Society of Dermatology, 2006, 4, 635-644.	0.4	4
65	A new way to generate cytolytic tumor-specific T cells: electroporation of RNA coding for a T cell receptor into T lymphocytes. Cancer Immunology, Immunotherapy, 2006, 55, 1132-1141.	2.0	95
66	Efficient elutriation of monocytes within a closed system (Elutraâ,,¢) for clinical-scale generation of dendritic cells. Journal of Immunological Methods, 2005, 298, 61-72.	0.6	107
67	A polyclonal anti-vaccine CD4 T cell response detected with HLA-DP4 multimers in a melanoma patient vaccinated with MAGE-3.DP4-peptide-pulsed dendritic cells. European Journal of Immunology, 2005, 35, 1066-1075.	1.6	37
68	Generation of an Optimized Polyvalent Monocyte-Derived Dendritic Cell Vaccine by Transfecting Defined RNAs after Rather Than before Maturation. Journal of Immunology, 2005, 174, 3087-3097.	0.4	133
69	Polyclonal CTL Responses Observed in Melanoma Patients Vaccinated with Dendritic Cells Pulsed with a MAGE-3.A1 Peptide. Journal of Immunology, 2003, 171, 4893-4897.	0.4	88
70	Rapid Induction of Tumor-specific Type 1 T Helper Cells in Metastatic Melanoma Patients by Vaccination with Mature, Cryopreserved, Peptide-loaded Monocyte-derived Dendritic Cells. Journal of Experimental Medicine, 2002, 195, 1279-1288.	4.2	435
71	The Extracellular Domain of CD83 Inhibits Dendritic Cell–mediated T Cell Stimulation and Binds to a Ligand on Dendritic Cells. Journal of Experimental Medicine, 2001, 194, 1813-1821.	4.2	168
72	A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. International Journal of Cancer, 2001, 93, 243-251.	2.3	353

#	Article	IF	CITATIONS
73	Ex Vivo Isolation and Characterization of Cd4+Cd25+ T Cells with Regulatory Properties from Human Blood. Journal of Experimental Medicine, 2001, 193, 1303-1310.	4.2	1,013
74	Culture of bone marrow cells in GM-CSF plus high doses of lipopolysaccharide generates exclusively immature dendritic cells which induce alloantigen- specific CD4 T cell anergyin vitro. European Journal of Immunology, 2000, 30, 1048-1052.	1.6	121
75	A method for the production of cryopreserved aliquots of antigen-preloaded, mature dendritic cells ready for clinical use. Journal of Immunological Methods, 2000, 245, 15-29.	0.6	147
76	Induction of Interleukin 10–Producing, Nonproliferating Cd4+ T Cells with Regulatory Properties by Repetitive Stimulation with Allogeneic Immature Human Dendritic Cells. Journal of Experimental Medicine, 2000, 192, 1213-1222.	4.2	1,425
77	Efficient Expression of the Tumor-Associated Antigen MAGE-3 in Human Dendritic Cells, Using an Avian Influenza Virus Vector. Human Gene Therapy, 2000, 11, 2207-2218.	1.4	34
78	An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. Journal of Immunological Methods, 1999, 223, 77-92.	0.6	2,735
79	Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application. Journal of Immunological Methods, 1999, 223, 1-15.	0.6	458
80	Vaccination with Mage-3a1 Peptide–Pulsed Mature, Monocyte-Derived Dendritic Cells Expands Specific Cytotoxic T Cells and Induces Regression of Some Metastases in Advanced Stage IV Melanoma. Journal of Experimental Medicine, 1999, 190, 1669-1678.	4.2	1,140
81	Migration of Langerhans cells and dermal dendritic cells in skin organ cultures: augmentation by TNF-α and IL-1 β. Journal of Leukocyte Biology, 1999, 66, 462-470.	1.5	110
82	Dendritic cells generated from blood precursors of chronic myelogenous leukemia patients carry the philadelphia translocation and can induce a CML-specific primary cytotoxic T-cell response. , 1997, 20, 215-223.		84
83	Dendritic cells generated from blood precursors of chronic myelogenous leukemia patients carry the philadelphia translocation and can induce a CML-specific primary cytotoxic T-cell response. , 1997, 20, 215.		1
84	Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. Journal of Immunological Methods, 1996, 196, 121-135.	0.6	647
85	Interleukin-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-Î ³ production by T helper 1 cells. European Journal of Immunology, 1996, 26, 659-668.	1.6	624
86	The immunologic properties of epidermal Langerhans cells as a part of the dendritic cell system. Seminars in Immunopathology, 1992, 13, 265-79.	4.0	123
87	Dendritic Cell Production of Cytokines and Responses to Cytokines. International Reviews of Immunology, 1990, 6, 151-161.	1.5	25
88	Abnormal expansions of granular lymphocytes: Reactive lymphocytosis or chronic leukemia? case report and literature review. Blut, 1986, 52, 73-89.	1.2	12
89	Primary leptomeningeal melanoma. Diagnosis by ultrastructural cytology of cerebrospinal fluid and cranial computed tomography. Cancer, 1982, 50, 1751-1756.	2.0	57