
Lidy van Kemenade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4804463/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemokine CXCb1 stimulates formation of NETs in trunk kidney neutrophils of common carp. Developmental and Comparative Immunology, 2020, 103, 103521.	1.0	13
2	17α-ethinylestradiol and 4-tert-octylphenol concurrently disrupt the immune response of common carp. Fish and Shellfish Immunology, 2020, 107, 238-250.	1.6	9
3	Cortisol Metabolism in Carp Macrophages: A Role for Macrophage-Derived Cortisol in M1/M2 Polarization. International Journal of Molecular Sciences, 2020, 21, 8954.	1.8	10
4	17β-Estradiol affects the innate immune response in common carp. Fish Physiology and Biochemistry, 2020, 46, 1775-1794.	0.9	8
5	Effects of stress and cortisol on the polarization of carp macrophages. Fish and Shellfish Immunology, 2019, 94, 27-37.	1.6	20
6	A role for CXC chemokines and their receptors in stress axis regulation of common carp. General and Comparative Endocrinology, 2019, 280, 194-199.	0.8	10
7	A role for multiple estrogen receptors in immune regulation of common carp. Developmental and Comparative Immunology, 2017, 66, 61-72.	1.0	32
8	Neuroendocrine-immune interaction: Evolutionarily conserved mechanisms that maintain allostasis in an ever-changing environment. Developmental and Comparative Immunology, 2017, 66, 2-23.	1.0	77
9	Stress differentially affects the systemic and leukocyte estrogen network in common carp. Fish and Shellfish Immunology, 2017, 68, 190-201.	1.6	9
10	Estrogen-dependent seasonal adaptations in the immune response of fish. Hormones and Behavior, 2017, 88, 15-24.	1.0	40
11	The immunomodulatory role of the hypothalamus-pituitary-gonad axis: Proximate mechanism for reproduction-immune trade offs?. Developmental and Comparative Immunology, 2017, 66, 43-60.	1.0	63
12	A shortâ€ŧerm extremely low frequency electromagnetic field exposure increases circulating leukocyte numbers and affects HPAâ€axis signaling in mice. Bioelectromagnetics, 2016, 37, 433-443.	0.9	14
13	Calcium homeostasis and low-frequency magnetic and electric field exposure: A systematic review and meta-analysis of in vitro studies. Environment International, 2016, 92-93, 695-706.	4.8	43
14	Calcium signalling in human neutrophil cell lines is not affected by lowâ€frequency electromagnetic fields. Bioelectromagnetics, 2015, 36, 430-443.	0.9	11
15	Low-Frequency Electromagnetic Field Exposure Enhances Extracellular Trap Formation by Human Neutrophils through the NADPH Pathway. Journal of Innate Immunity, 2015, 7, 459-465.	1.8	20
16	A role for melatonin in maintaining the pro- and anti-inflammatory balance by influencing leukocyte migration and apoptosis in carp. Developmental and Comparative Immunology, 2015, 53, 179-190.	1.0	23
17	Activity of the hypothalamus–pituitary–interrenal axis (HPI axis) and immune response in carp lines with different susceptibility to disease. Fish Physiology and Biochemistry, 2015, 41, 1261-1278.	0.9	28
18	Stress-induced adaptation of neutrophilic granulocyte activity in K and R3 carp lines. Fish and Shellfish Immunology, 2015, 47, 886-892.	1.6	3

#	Article	IF	CITATIONS
19	Production of inflammatory mediators and extracellular traps by carp macrophages and neutrophils in response to lipopolysaccharide and/or interferon-γ2. Fish and Shellfish Immunology, 2015, 42, 473-482.	1.6	39
20	Characterization and expression analysis of an interferon-γ2 induced chemokine receptor CXCR3 in common carp (Cyprinus carpio L.). Developmental and Comparative Immunology, 2014, 47, 68-76.	1.0	21
21	Mechanisms involved in apoptosis of carp leukocytes upon inÂvitro and inÂvivo immunostimulation. Fish and Shellfish Immunology, 2014, 39, 386-395.	1.6	14
22	Neuroendocrine–immune interaction: Regulation of inflammation via G-protein coupled receptors. General and Comparative Endocrinology, 2013, 188, 94-101.	0.8	34
23	Carp neutrophilic granulocytes form extracellular traps via ROS-dependent and independent pathways. Fish and Shellfish Immunology, 2013, 34, 1244-1252.	1.6	56
24	Neuroendocrine modulation of the inflammatory response in common carp: Adrenaline regulates leukocyte profile and activity. General and Comparative Endocrinology, 2013, 188, 102-109.	0.8	17
25	Adrenergic regulation of the innate immune response in common carp (Cyprinus carpio L.). Developmental and Comparative Immunology, 2012, 36, 306-316.	1.0	33
26	FinTRIMs, fish virus-inducible proteins with E3 ubiquitin ligase activity. Developmental and Comparative Immunology, 2012, 36, 433-441.	1.0	33
27	Pro-inflammatory functions of carp CXCL8-like and CXCb chemokines. Developmental and Comparative Immunology, 2012, 36, 741-750.	1.0	54
28	Diversification of IFNγ-inducible CXCb chemokines in cyprinid fish. Developmental and Comparative Immunology, 2012, 38, 243-253.	1.0	19
29	Lowâ€frequency electromagnetic fields do not alter responses of inflammatory genes and proteins in human monocytes and immune cell lines. Bioelectromagnetics, 2012, 33, 226-237.	0.9	19
30	Extremely low frequency electromagnetic field exposure does not modulate toll-like receptor signaling in human peripheral blood mononuclear cells. Cytokine, 2011, 54, 43-50.	1.4	19
31	Neuroendocrine–immune interaction in fish: Differential regulation of phagocyte activity by neuroendocrine factors. General and Comparative Endocrinology, 2011, 172, 31-38.	0.8	52
32	CXCL8 Chemokines in Teleost Fish: Two Lineages with Distinct Expression Profiles during Early Phases of Inflammation. PLoS ONE, 2010, 5, e12384.	1.1	106
33	Functional analysis of carp interferon-l³: Evolutionary conservation of classical phagocyte activation. Fish and Shellfish Immunology, 2010, 29, 793-802.	1.6	88
34	Common carp have two subclasses of bonyfish specific antibody IgZ showing differential expression in response to infection. Developmental and Comparative Immunology, 2010, 34, 1183-1190.	1.0	91
35	Trypanosomiasis-Induced Th17-Like Immune Responses in Carp. PLoS ONE, 2010, 5, e13012.	1.1	48
36	Function of the Opioid System during Inflammation in Carp. Annals of the New York Academy of Sciences, 2009, 1163, 528-532.	1.8	12

#	Article	IF	CITATIONS
37	Morphine affects the inflammatory response in carp by impairment of leukocyte migration. Developmental and Comparative Immunology, 2009, 33, 88-96.	1.0	44
38	Cloning of opioid receptors in common carp (Cyprinus carpio L.) and their involvement in regulation of stress and immune response. Brain, Behavior, and Immunity, 2009, 23, 257-266.	2.0	35
39	The immune response differentially regulates Hsp70 and glucocorticoid receptor expression in vitro and in vivo in common carp (Cyprinus carpio L.). Fish and Shellfish Immunology, 2009, 27, 9-16.	1.6	52
40	Expression profiles of matrix metalloproteinase 9 in teleost fish provide evidence for its active role in initiation and resolution of inflammation. Immunology, 2008, 125, 601-610.	2.0	65
41	Stress and innate immunity in carp: Corticosteroid receptors and pro-inflammatory cytokines. Molecular Immunology, 2008, 46, 70-79.	1.0	93
42	In vivo kinetics of cytokine expression during peritonitis in carp: Evidence for innate and alternative macrophage polarization. Developmental and Comparative Immunology, 2008, 32, 509-518.	1.0	53
43	Differential expression of two interferon-γ genes in common carp (Cyprinus carpio L.). Developmental and Comparative Immunology, 2008, 32, 1467-1481.	1.0	117
44	Corticotropin-releasing factor (CRF) and CRF-binding protein expression in and release from the head kidney of common carp: evolutionary conservation of the adrenal CRF system. Journal of Endocrinology, 2007, 193, 349-357.	1.2	22
45	Real-time gene expression analysis in carp (Cyprinus carpio L.) skin: Inflammatory responses to injury mimicking infection with ectoparasites. Developmental and Comparative Immunology, 2007, 31, 244-254.	1.0	62
46	The first appearance of Rodlet cells in carp (Cyprinus carpio L.) ontogeny and their possible roles during stress and parasite infection. Fish and Shellfish Immunology, 2007, 22, 27-37.	1.6	47
47	Increased Leptin Expression in Common Carp (Cyprinus carpio) after Food Intake But Not after Fasting or Feeding to Satiation. Endocrinology, 2006, 147, 5786-5797.	1.4	205
48	The presence of multiple and differentially regulated interleukin-12p40 genes in bony fishes signifies an expansion of the vertebrate heterodimeric cytokine family. Molecular Immunology, 2006, 43, 1519-1533.	1.0	67
49	Central and peripheral interleukin-1 ^{î2} and interleukin-1 receptor I expression and their role in the acute stress response of common carp, Cyprinus carpio L Journal of Endocrinology, 2006, 191, 25-35.	1.2	79
50	Evolution of glucocorticoid receptors with different glucocorticoid sensitivity. Journal of Endocrinology, 2006, 190, 17-28.	1.2	138
51	Corticotropin-releasing hormone-receptor 1 (CRH-R1) and CRH-binding protein (CRH-BP) are expressed in the gills and skin of common carp Cyprinus carpio L. and respond to acute stress and infection. Journal of Experimental Biology, 2006, 209, 510-517.	0.8	37
52	Regulation of the Stress Response in Early Vertebrates. Annals of the New York Academy of Sciences, 2005, 1040, 345-347.	1.8	12
53	Multiple and highly divergent IL-11 genes in teleost fish. Immunogenetics, 2005, 57, 432-443.	1.2	64
54	Novel immunoglobulin-like transcripts in teleost fish encode polymorphic receptors with cytoplasmic ITAM or ITIM and a new structural Ig domain similar to the natural cytotoxicity receptor NKp44. Immunogenetics, 2005, 57, 77-89.	1.2	49

#	Article	IF	CITATIONS
55	Three novel carp CXC chemokines are expressed early in ontogeny and at nonimmune sites. FEBS Journal, 2004, 271, 4094-4106.	0.2	86
56	Structural characterisation of a cyprinid (Cyprinus carpio L.) CRH, CRH-BP and CRH-R1, and the role of these proteins in the acute stress response. Journal of Molecular Endocrinology, 2004, 32, 627-648.	1.1	160
57	The molecular evolution of the interleukin-1 family of cytokines; IL-18 in teleost fish. Developmental and Comparative Immunology, 2004, 28, 395-413.	1.0	153
58	Increased efficacy of immersion vaccination in fish with hyperosmotic pretreatment. Vaccine, 2003, 21, 4178-4193.	1.7	78
59	Daily handling stress reduces resistance of carp to Trypanoplasma borreli: in vitro modulatory effects of cortisol on leukocyte function and apoptosis. Developmental and Comparative Immunology, 2003, 27, 233-245.	1.0	103
60	CXC chemokines and leukocyte chemotaxis in common carp (Cyprinus carpio L.). Developmental and Comparative Immunology, 2003, 27, 875-888.	1.0	114
61	Molecular evolution of CXC chemokines: extant CXC chemokines originate from the CNS. Trends in Immunology, 2003, 24, 306-312.	2.9	108
62	Differential expression and haplotypic variation of two interleukin-1β genes in the common carp (Cyprinus carpio L.). Cytokine, 2003, 22, 21-32.	1.4	82
63	Characterisation of a monoclonal antibody to carp IL- $1^{\hat{l}^2}$ and the development of a sensitive capture ELISA. Fish and Shellfish Immunology, 2002, 13, 85-95.	1.6	23
64	Neuroendocrine–immune interactions in fish: a role for interleukin-1. Veterinary Immunology and Immunopathology, 2002, 87, 467-479.	0.5	145
65	Regulation of interleukin 1 beta RNA expression in the common carp, Cyprinus carpio L Developmental and Comparative Immunology, 2001, 25, 195-203.	1.0	113
66	Interactions between the immune system and the hypothalamo-pituitary-interrenal axis in fish. Fish and Shellfish Immunology, 1999, 9, 1-20.	1.6	204
67	Differential effects of cortisol on apoptosis and proliferation of carp B-lymphocytes from head kidney, spleen and blood. Fish and Shellfish Immunology, 1999, 9, 405-415.	1.6	74
68	Characterisation of Glucocorticoid Receptors in Peripheral Blood Leukocytes of Carp,Cyprinus carpioL General and Comparative Endocrinology, 1998, 111, 1-8.	0.8	68
69	Distribution of macrophages during fish development: an immunohistochemical study in carp () Tj ETQq1 1 0.7	84314 rgBT 1.5	/Qyerlock 10
70	Cortisol inhibits apoptosis in carp neutrophilic granulocytes. Developmental and Comparative Immunology, 1998, 22, 563-572.	1.0	105
71	Cortisol induces apoptosis in activated B cells, not in other lymphoid cells of the common carp, Cyprinus carpio L Developmental and Comparative Immunology, 1998, 22, 551-562.	1.0	104
72	Conservation of Apoptosis as an Immune Regulatory Mechanism: Effects of Cortisol and Cortisone on Carp Lymphocytes. Brain, Behavior, and Immunity, 1997, 11, 95-105.	2.0	73

#	Article	IF	CITATIONS
73	A common carp (Cyprinus carpioL.) leucocyte cell line shares morphological and functional characteristics with macrophages. Fish and Shellfish Immunology, 1997, 7, 123-133.	1.6	52
74	Multiple regulation of carp (Cyprinus carpio L.) macrophages and neutrophilic granulocytes by serum factors: influence of infection with atypical Aeromonas salmonicida. Veterinary Immunology and Immunopathology, 1996, 51, 189-200.	0.5	17
75	Effects of antibacterial drugs on European eal (Anguilla anguilla L., 1758) peripheral leucocytes. Comparative Haematology International, 1995, 5, 268-272.	0.5	1
76	Carp macrophages and neutrophilic granulocytes secrete an interleukin-1-like factor. Developmental and Comparative Immunology, 1995, 19, 59-70.	1.0	82
77	Characterisation of immunoglobulin-binding leucocytes in carp (Cyprinus carpio L.). Developmental and Comparative Immunology, 1994, 18, 45-56.	1.0	42
78	Characterization of Î ³ -Aminobutyric Acid Receptors in the Neurointermediate Lobe of the Amphibian Xenopus Laevis*. Endocrinology, 1987, 120, 622-628.	1.4	33
79	III. Regulation of cyclic-AMP synthesis in amphibian melanotrope cells through catecholamine and GABA receptors. Life Sciences, 1987, 40, 1859-1867.	2.0	15
80	An NPY-like peptide may function as MSH-release inhibiting factor in Xenopus laevis. Peptides, 1987, 8, 61-67.	1.2	83
81	Assessment of TRH as a potential MSH release stimulating factor in Xenopus laevis. Peptides, 1987, 8, 69-76.	1.2	77
82	Regulation of MSH release from the neurointermediate lobe of Xenopus laevis by CRF-like peptides. Peptides, 1987, 8, 1093-1100.	1.2	71
83	N-Terminal Acetylation of Melanophore-Stimulating Hormone in the Pars intermedia of <i>Xenopus laevis </i> Is a Physiologically Regulated Process. Neuroendocrinology, 1987, 46, 289-296.	1.2	29
84	Effect of tunicamycin on biosynthesis, processing and release of proopiomelanocortin-derived peptides in the intermediate lobe of the frog Rana ridibunda. Peptides, 1986, 7, 163-169.	1.2	16
85	Characteristics of Receptors for Dopamine in the Pars intermedia of the Amphibian <i>Xenopus laevis</i> . Neuroendocrinology, 1986, 44, 446-456.	1.2	66
86	Regulation of melanotropin release from the pars intermedia of the amphibian Xenopus laevis: Evaluation of the involvement of serotonergic, cholinergic, or adrenergic receptor mechanisms. General and Comparative Endocrinology, 1986, 63, 471-480.	0.8	38
87	GABAergic Regulation of Melanocyte-Stimulating Hormone Secretion from the Pars Intermedia ofXenopus Laevis: Immunocytochemical and Physiological Evidence. Endocrinology, 1986, 118, 260-267.	1.4	55
88	Regulation of biosynthesis and release of pars intermedia peptides in Rana ridibunda: Dopamine affects both acetylation and release of α-MSH. Peptides, 1985, 6, 913-921.	1.2	42
89	The development of the pars intermedia and its role in the regulation of dermal melanophores in the larvae of the amphibian Xenopus laevis. General and Comparative Endocrinology, 1984, 55, 54-65.	0.8	30