
Heikki Remes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4803822/publications.pdf Version: 2024-02-01

HEIKKI REMES

#	Article	IF	CITATIONS
1	Influence of grain size distribution on the Hall–Petch relationship of welded structural steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 592, 28-39.	2.6	171
2	The stiffness of laser stake welded T-joints in web-core sandwich structures. Thin-Walled Structures, 2007, 45, 453-462.	2.7	63
3	Fatigue strength of welded butt joints in thin and slender specimens. International Journal of Fatigue, 2012, 44, 98-106.	2.8	59
4	Strain accumulation during microstructurally small fatigue crack propagation in bcc Fe-Cr ferritic stainless steel. Acta Materialia, 2018, 144, 51-59.	3.8	49
5	Fatigue strength analysis of laser-hybrid welds in thin plate considering weld geometry in microscale. International Journal of Fatigue, 2016, 87, 143-152.	2.8	48
6	Characterisation of local grain size variation of welded structural steel. Welding in the World, Le Soudage Dans Le Monde, 2016, 60, 673-688.	1.3	43
7	Experimental and numerical penetration response of laser-welded stiffened panels. International Journal of Impact Engineering, 2018, 114, 78-92.	2.4	43
8	Influence of weld quality on the fatigue strength of thin normal and high strength steel butt joints. Welding in the World, Le Soudage Dans Le Monde, 2016, 60, 731-740.	1.3	40
9	Statistical size effect on multiaxial fatigue strength of notched steel components. International Journal of Fatigue, 2017, 104, 322-333.	2.8	38
10	Fatigue strength of laser-welded thin-plate ship structures based on nominal and structural hot-spot stress approach. Ships and Offshore Structures, 2015, 10, 39-44.	0.9	37
11	Fatigue strength of thin laser-hybrid welded full-scale deck structure. International Journal of Fatigue, 2017, 95, 282-292.	2.8	36
12	Influence of surface integrity on the fatigue strength of high-strength steels. Journal of Constructional Steel Research, 2013, 89, 21-29.	1.7	35
13	Round robin study on structural hot-spot and effective notch stress analysis. Ships and Offshore Structures, 2008, 3, 335-345.	0.9	34
14	Statistics of Weld Geometry for Laser-Hybrid Welded Joints and its Application within Notch Stress Approach. Welding in the World, Le Soudage Dans Le Monde, 2010, 54, R189-R207.	1.3	34
15	Strain-based approach to fatigue crack initiation and propagation in welded steel joints with arbitrary notch shape. International Journal of Fatigue, 2013, 52, 114-123.	2.8	33
16	Fatigue assessment of laser stake-welded T-joints. International Journal of Fatigue, 2011, 33, 102-114.	2.8	32
17	Microporosity and statistical size effect on the fatigue strength of cast aluminium alloys EN AC-45500 and 46200. Materials Science & Amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 707, 567-575.	2.6	32
18	Fatigue strength modelling of high-performing welded joints. International Journal of Fatigue, 2020, 135, 105555.	2.8	32

#	Article	IF	CITATIONS
19	Laser-welded web-core sandwich plates under patch loading. Marine Structures, 2007, 20, 25-48.	1.6	31
20	Size dependent response of large shell elements under in-plane tensile loading. International Journal of Solids and Structures, 2014, 51, 3752-3761.	1.3	31
21	A finite element study on residual stress stability and fatigue damage in high-frequency mechanical impact (HFMI)-treated welded joint. International Journal of Fatigue, 2017, 94, 16-29.	2.8	30
22	Continuum approach to fatigue crack initiation and propagation in welded steel joints. International Journal of Fatigue, 2012, 40, 16-26.	2.8	29
23	Influencing factors on fatigue strength of welded thin plates based on structural stress assessment. Welding in the World, Le Soudage Dans Le Monde, 2014, 58, 915-923.	1.3	28
24	Influence of load length on short-term ice load statistics in full-scale. Marine Structures, 2017, 52, 153-172.	1.6	28
25	J-integral-based approach to fatigue assessment of laser stake-welded T-joints. International Journal of Fatigue, 2013, 47, 340-350.	2.8	27
26	Influence of initial distortion on the structural stress in 3mm thick stiffened panels. Thin-Walled Structures, 2013, 72, 121-127.	2.7	26
27	Fatigue strength assessment of laser stakeâ€welded web ore steel sandwich panels. Fatigue and Fracture of Engineering Materials and Structures, 2013, 36, 724-737.	1.7	26
28	Factors affecting the fatigue strength of thin-plates in large structures. International Journal of Fatigue, 2017, 101, 397-407.	2.8	24
29	Interaction effect of adjacent small defects on the fatigue limit of a medium carbon steel. Fatigue and Fracture of Engineering Materials and Structures, 2017, 40, 130-144.	1.7	22
30	Fatigue strength evaluation of small defect at stress concentration. Procedia Structural Integrity, 2017, 7, 351-358.	0.3	22
31	Material characterization of high-frequency mechanical impact (HFMI)-treated high-strength steel. Materials and Design, 2016, 89, 205-214.	3.3	20
32	The influence of interacting small defects on the fatigue limits of a pure iron and a bearing steel. International Journal of Fatigue, 2020, 135, 105560.	2.8	20
33	Microstructure and fatigue properties of friction stir welded high-strength steel plates. Science and Technology of Welding and Joining, 2018, 23, 380-386.	1.5	18
34	Influence of general corrosion on buckling strength of laser-welded web-core sandwich plates. Journal of Constructional Steel Research, 2014, 101, 342-350.	1.7	17
35	Influence of crack tip plasticity on the slope of fatigue curves for laser stake-welded T-joints loaded under tension and bending. International Journal of Fatigue, 2017, 99, 125-136.	2.8	17
36	A benchmark study of uncertainness in welding simulation. Marine Structures, 2017, 56, 69-84.	1.6	17

#	Article	IF	CITATIONS
37	Fatigue strength of laser-welded foam-filled steel sandwich beams. Materials and Design, 2017, 115, 64-72.	3.3	17
38	Hull-superstructure interaction in optimised passenger ships. Ships and Offshore Structures, 2013, 8, 612-620.	0.9	16
39	On the slope of the fatigue resistance curve for laser stakeâ€welded Tâ€joints. Fatigue and Fracture of Engineering Materials and Structures, 2013, 36, 1336-1351.	1.7	16
40	Hydrogen effects on mechanical properties of 18%Cr ferritic stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 700, 331-337.	2.6	16
41	Optimisation of passenger ship structures in concept design stage. Ships and Offshore Structures, 2019, 14, 320-334.	0.9	16
42	Equivalent mechanical properties for cylindrical cell honeycomb core structure. Composite Structures, 2014, 108, 866-875.	3.1	15
43	Influence of initial distortion of 3Âmm thin superstructure decks on hull girder response for fatigue assessment. Marine Structures, 2014, 37, 203-218.	1.6	14
44	Influence of crack tip plasticity on fatigue behaviour of laser stake-welded T-joints made of thin plates. International Journal of Mechanical Sciences, 2018, 136, 112-123.	3.6	14
45	Fatigue strength of high-strength steel after shipyard production process of plasma cutting, grinding, and sandblasting. Welding in the World, Le Soudage Dans Le Monde, 2018, 62, 1273-1284.	1.3	14
46	Influence of three-dimensional weld undercut geometry on fatigue-effective stress. Welding in the World, Le Soudage Dans Le Monde, 2019, 63, 277-291.	1.3	14
47	Fatigue properties of as-welded and post-weld-treated high-strength steel joints: The influence of constant and variable amplitude loads. International Journal of Fatigue, 2020, 138, 105687.	2.8	14
48	EBSD characterisation of grain size distribution and grain sub-structures for ferritic steel weld metals. Welding in the World, Le Soudage Dans Le Monde, 2022, 66, 363-377.	1.3	12
49	A 2ndâ~'order SCF solution for modeling distortion effects on fatigue of lightweight structures. Welding in the World, Le Soudage Dans Le Monde, 2019, 63, 1695-1705.	1.3	11
50	Influence of internal and surface defects on the fatigue performance of additively manufactured stainless steel 316L. International Journal of Fatigue, 2022, 163, 107025.	2.8	11
51	Round robin study on local stress and fatigue assessment of lap joints and doubler plates. Ships and Offshore Structures, 2013, 8, 621-627.	0.9	10
52	The effect of the extension of the instrumentation on the measured ice-induced load on a ship hull. Ocean Engineering, 2017, 144, 327-339.	1.9	10
53	Curricular Concept Maps as Structured Learning Diaries: Collecting Data on Self-Regulated Learning and Conceptual Thinking for Learning Analytics Applications. Journal of Learning Analytics, 2019, 6, .	1.8	10
54	Stress magnification factor for angular misalignment between plates with welding-induced curvature. Welding in the World, Le Soudage Dans Le Monde, 2020, 64, 729-751.	1.3	10

#	Article	IF	CITATIONS
55	Non-linear effective properties for web-core steel sandwich panels in tension. International Journal of Mechanical Sciences, 2016, 115-116, 428-437.	3.6	8
56	Allowable stresses in high-frequency mechanical impact (HFMI)-treated joints subjected to variable amplitude loading. Welding in the World, Le Soudage Dans Le Monde, 2017, 61, 125-138.	1.3	8
57	Fatigue strength assessment of laser stakeâ€welded Tâ€joints subjected to reversed bending. Fatigue and Fracture of Engineering Materials and Structures, 2016, 39, 1272-1280.	1.7	7
58	A review on non-classical continuum mechanics with applications in marine engineering. Mechanics of Advanced Materials and Structures, 2020, 27, 1065-1075.	1.5	7
59	Influence of weld rigidity on the non-linear structural response of beams with a curved distortion. Engineering Structures, 2021, 246, 113044.	2.6	6
60	Optimizing the Voce–Chaboche Model Parameters for Fatigue Life Estimation of Welded Joints in High-Strength Marine Structures. Journal of Marine Science and Engineering, 2022, 10, 818.	1.2	6
61	Fatigue Assessment of Large Thin-Walled Structures with Initial Distortions. Advanced Materials Research, 0, 891-892, 123-129.	0.3	5
62	Analytical treatment of distortion effects on fatigue behaviors of lightweight shipboard structures. International Journal of Fatigue, 2020, 130, 105286.	2.8	5
63	Post-buckling of web-core sandwich plates based on classical continuum mechanics: success and needs for non-classical formulations. Meccanica, 2021, 56, 1287-1302.	1.2	5
64	Coarse mesh finite element model for cruise ship global and local vibration analysis. Marine Structures, 2021, 79, 103053.	1.6	5
65	A Multi-Objective Optimisation-Based Structural Design Procedure for the Concept Stage – A Chemical Product Tanker Case Study. Ship Technology Research, 2010, 57, 182-196.	1.1	4
66	Block Erection Sequencing in Shipbuilding With General Lifting and Joining Times. Journal of Ship Production and Design, 2013, 29, 49-56.	0.2	4
67	Microstructure and Strain-Based Fatigue Life Approach for High-Performance Welds. Advanced Materials Research, 0, 891-892, 1500-1506.	0.3	4
68	Fatigue Strength Assessment of Welded Mild Steel Joints Containing Bulk Imperfections. Metals, 2018, 8, 306.	1.0	4
69	Full-field Strain Measurements for Microstructurally Small Fatigue Crack Propagation Using Digital Image Correlation Method. Journal of Visualized Experiments, 2019, , .	0.2	4
70	Quantitative Characterization of the Spatial Distribution of Corrosion Pits Based on Nearest Neighbor Analysis. Corrosion, 2020, 76, 861-870.	0.5	4
71	Block Erection in the Event of Delays in Shipbuilding: A Scenario-Based Approach. Journal of Ship Production and Design, 2016, 32, 37-49.	0.2	4
72	The effect of interacting small defects on the fatigue limit of a medium carbon steel. Procedia Structural Integrity, 2016, 2, 3322-3329.	0.3	3

#	Article	IF	CITATIONS
73	Influences of Residual Stress, Surface Roughness and Peak-Load on Micro-Cracking: Sensitivity Analysis. Metals, 2021, 11, 320.	1.0	3
74	A traction force approach for fatigue assessment of complex welded structures. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 3056.	1.7	3
75	Block Erection in the Event of Delays in Shipbuilding: A Scenario-Based Approach. Journal of Ship Production and Design, 2016, 32, 37-49.	0.2	3
76	Free vibration by length-scale separation and inertia-induced interaction –application to large thin-walled structures. Mechanics of Advanced Materials and Structures, 0, , 1-15.	1.5	3
77	Free flexural vibration of symmetric beams with inertia induced cross section deformations. Thin-Walled Structures, 2017, 119, 1-12.	2.7	2
78	Influence of material non-linearity on load carrying mechanism and strain path in stiffened panel. Procedia Structural Integrity, 2017, 5, 713-720.	0.3	2
79	Emerging Challenges for Numerical Simulations of Quasi-Static Collision Experiments on Laser-Welded Thin-Walled Steel Structures. Journal of Marine Science and Application, 2020, 19, 567-583.	0.7	2
80	Block Erection Sequencing in Shipbuilding With General Lifting and Joining Times. Journal of Ship Production and Design, 2013, 29, 49-56.	0.2	2
81	The Effect of the Secondary Bending Moment on the Fracture Strength Evaluation of the Laser Welded Joints from a Web Core Sandwich Structure. Key Engineering Materials, 2014, 601, 124-128.	0.4	1
82	Limit State Analyses in Design of Thin-Walled Marine Structures—Some Aspects on Length-Scales. Journal of Offshore Mechanics and Arctic Engineering, 2020, 142, .	0.6	1
83	Fatigue Crack Growth Rate in Laser-Welded Web Core Sandwich Panels - Fatigue Crack Propagation in Welded Base Metal. Advanced Materials Research, 0, 891-892, 1212-1216.	0.3	0
84	Influence of Nonsymmetric Steel Sandwich Panel Joints on Response and Fatigue Strength of Passenger Ship Deck Structures. Journal of Ship Production and Design, 2017, 33, 135-143.	0.2	0
85	Limit State Analyses in Design of Thin-Walled Marine Structures: Some Aspects on Length-Scales. , 2018, , .		0
86	Generalized Formulation for Fatigue Assessment of Laser Stake-welded T-joints Varying Thicknesses and Loading Conditions. MATEC Web of Conferences, 2019, 269, 03001.	0.1	0
87	Round-robin on local stress determination and fatigue assessment of load-carrying fillet-welded joints. , 2011, , 295-302.		0
88	Experimental Investigations on Stiffened and Web-core Sandwich Panels Made for Steel under Quasi-Static Penetration. Procedia Structural Integrity, 2022, 37, 17-24.	0.3	0