
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4803673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Complexity of the cGAS-STING Pathway in CNS Pathologies. Frontiers in Neuroscience, 2021, 15, 621501.	1.4	28
2	Biomaterial Strategies for Restorative Therapies in Parkinson's Disease. ACS Chemical Neuroscience, 2021, 12, 4224-4235.	1.7	7
3	The use of bioactive matrices in regenerative therapies for traumatic brain injury. Acta Biomaterialia, 2020, 102, 1-12.	4.1	17
4	An altered glial phenotype in the NL3R451C mouse model of autism. Scientific Reports, 2020, 10, 14492.	1.6	17
5	Abrogation of type-I interferon signalling alters the microglial response to Aβ1–42. Scientific Reports, 2020, 10, 3153.	1.6	21
6	STINC-Mediated Autophagy Is Protective against H2O2-Induced Cell Death. International Journal of Molecular Sciences, 2020, 21, 7059.	1.8	7
7	Genetic Modulators of Traumatic Brain Injury in Animal Models and the Impact of Sex-Dependent Effects. Journal of Neurotrauma, 2020, 37, 706-723.	1.7	5
8	Migration and Differentiation of Neural Stem Cells Diverted From the Subventricular Zone by an Injectable Self-Assembling β-Peptide Hydrogel. Frontiers in Bioengineering and Biotechnology, 2019, 7, 315.	2.0	31
9	Targeting high-mobility group box protein 1 (HMGB1) in pediatric traumatic brain injury: Chronic neuroinflammatory, behavioral, and epileptogenic consequences. Experimental Neurology, 2019, 320, 112979.	2.0	38
10	The influence of neuroinflammation in Autism Spectrum Disorder. Brain, Behavior, and Immunity, 2019, 79, 75-90.	2.0	214
11	Cover Image, Volume 527, Issue 5. Journal of Comparative Neurology, 2019, 527, C1.	0.9	0
12	The involvement of microglia in Alzheimer's disease: a new dog in the fight. British Journal of Pharmacology, 2019, 176, 3533-3543.	2.7	27
13	Metal chaperones: a novel therapeutic strategy for brain injury?. Brain Injury, 2019, 33, 305-312.	0.6	5
14	Ageâ€dependent release of highâ€mobility group box proteinâ€1 and cellular neuroinflammation after traumatic brain injury in mice. Journal of Comparative Neurology, 2019, 527, 1102-1117.	0.9	37
15	Type-I interferon pathway in neuroinflammation and neurodegeneration: focus on Alzheimer's disease. Journal of Neural Transmission, 2018, 125, 797-807.	1.4	66
16	STING-mediated type-I interferons contribute to the neuroinflammatory process and detrimental effects following traumatic brain injury. Journal of Neuroinflammation, 2018, 15, 323.	3.1	95
17	High-throughput screening for small molecule inhibitors of the type-I interferon signaling pathway. Acta Pharmaceutica Sinica B, 2018, 8, 889-899.	5.7	7
18	Inflammation in epileptogenesis after traumatic brain injury. Journal of Neuroinflammation, 2017, 14, 10.	3.1	194

#	Article	IF	CITATIONS
19	Oxidation of Iron under Physiologically Relevant Conditions in Biological Fluids from Healthy and Alzheimer's Disease Subjects. ACS Chemical Neuroscience, 2017, 8, 731-736.	1.7	3
20	Typeâ€l interferons mediate the neuroinflammatory response and neurotoxicity induced by rotenone. Journal of Neurochemistry, 2017, 141, 75-85.	2.1	21
21	Type-I interferon signalling through IFNAR1 plays a deleterious role in the outcome after stroke. Neurochemistry International, 2017, 108, 472-480.	1.9	22
22	COPD and stroke: are systemic inflammation and oxidative stress the missing links?. Clinical Science, 2016, 130, 1039-1050.	1.8	138
23	The contribution of neuroinflammation to amyloid toxicity in Alzheimer's disease. Journal of Neurochemistry, 2016, 136, 457-474.	2.1	331
24	Typeâ€1 interferons contribute to the neuroinflammatory response and disease progression of the MPTP mouse model of Parkinson's disease. Glia, 2016, 64, 1590-1604.	2.5	71
25	Deletion of the type-1 interferon receptor in APPSWE/PS1î"E9 mice preserves cognitive function and alters glial phenotype. Acta Neuropathologica Communications, 2016, 4, 72.	2.4	58
26	The contribution of astrocytes and microglia to traumatic brain injury. British Journal of Pharmacology, 2016, 173, 692-702.	2.7	447
27	Evidence for the recruitment of autophagic vesicles in human brain after stroke. Neurochemistry International, 2016, 96, 62-68.	1.9	16
28	Perturbation of the transcriptome: implications of the innate immune system in Alzheimer's disease. Current Opinion in Pharmacology, 2016, 26, 47-53.	1.7	14
29	Ablation of Type-1 IFN Signaling in Hematopoietic Cells Confers Protection Following Traumatic Brain Injury. ENeuro, 2016, 3, ENEURO.0128-15.2016.	0.9	48
30	Soluble amyloid triggers a myeloid differentiation factor 88 and interferon regulatory factor 7 dependent neuronal type-1 interferon response in vitro. Journal of Neuroinflammation, 2015, 12, 71.	3.1	21
31	Robust Gene Dysregulation in Alzheimer's Disease Brains. Journal of Alzheimer's Disease, 2014, 41, 587-597.	1.2	15
32	Effects of GDNF‣oaded Injectable Gelatinâ€Based Hydrogels on Endogenous Neural Progenitor Cell Migration. Advanced Healthcare Materials, 2014, 3, 761-774.	3.9	44
33	Anti-lysophosphatidic acid antibodies improve traumatic brain injury outcomes. Journal of Neuroinflammation, 2014, 11, 37.	3.1	80
34	Type-1 interferons contribute to oxygen glucose deprivation induced neuro-inflammation in BE(2)M17 human neuroblastoma cells. Journal of Neuroinflammation, 2014, 11, 43.	3.1	14
35	Nanofibrous scaffolds releasing a small molecule BDNF-mimetic for the re-direction of endogenous neuroblast migration in the brain. Biomaterials, 2014, 35, 2692-2712.	5.7	59
36	Ceruloplasmin and β-amyloid precursor protein confer neuroprotection in traumatic brain injury and lower neuronal iron. Free Radical Biology and Medicine, 2014, 69, 331-337.	1.3	49

#	Article	IF	CITATIONS
37	Type-1 interferon signaling mediates neuro-inflammatory events in models of Alzheimer's disease. Neurobiology of Aging, 2014, 35, 1012-1023.	1.5	120
38	Glutathione Peroxidase-1 Reduces Influenza A Virus–Induced Lung Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 17-26.	1.4	65
39	Neuroinflammation and oxidative stress: Co-conspirators in the pathology of Parkinson's disease. Neurochemistry International, 2013, 62, 803-819.	1.9	250
40	Weight-Bearing Locomotion in the Developing Opossum, Monodelphis domestica following Spinal Transection: Remodeling of Neuronal Circuits Caudal to Lesion. PLoS ONE, 2013, 8, e71181.	1.1	10
41	MyD88 Is a Critical Regulator of Hematopoietic Cell-Mediated Neuroprotection Seen after Stroke. PLoS ONE, 2013, 8, e57948.	1.1	18
42	Insulin-Regulated Aminopeptidase Deficiency Provides Protection against Ischemic Stroke in Mice. Journal of Neurotrauma, 2012, 29, 1243-1248.	1.7	21
43	Glutathione Peroxidase-1 Primes Pro-Inflammatory Cytokine Production after LPS Challenge In Vivo. PLoS ONE, 2012, 7, e33172.	1.1	30
44	Divergent Roles of Glutathione Peroxidase-1 (Gpx1) in Regulation of Leukocyte-Endothelial Cell Interactions in the Inflamed Cerebral Microvasculature. Microcirculation, 2011, 18, 12-23.	1.0	5
45	Compartment- and context-specific changes in tissue-type plasminogen activator (tPA) activity following brain injury and pharmacological stimulation. Laboratory Investigation, 2011, 91, 1079-1091.	1.7	39
46	Levosimendan preserves the contractile responsiveness of hypoxic human myocardium via mitochondrial KATP channel and potential pERK 1/2 activation. European Journal of Pharmacology, 2011, 655, 59-66.	1.7	22
47	A global transcriptomic view of the multifaceted role of glutathione peroxidase-1 in cerebral ischemic–reperfusion injury. Free Radical Biology and Medicine, 2011, 50, 736-748.	1.3	20
48	Synthesis of a hypoxia-targeted conjugate of the cardioprotective agent 3′,4′-dihydroxyflavonol and evaluation of its ability to reduce ischaemia/reperfusion injury. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5102-5106.	1.0	11
49	Neural injury following stroke: are Tollâ€like receptors the link between the immune system and the CNS?. British Journal of Pharmacology, 2010, 160, 1872-1888.	2.7	106
50	Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells. Cellular Microbiology, 2010, 12, 372-385.	1.1	382
51	Glutathione peroxidase-1 protects against cigarette smoke-induced lung inflammation in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 299, L425-L433.	1.3	76
52	The σ1 receptor agonist 4-PPBP elicits ERK1/2 phosphorylation in primary neurons: A possible mechanism of neuroprotective action. Neuropharmacology, 2010, 59, 416-424.	2.0	23
53	The Role of the Toll-Like Receptors in Neuropathology. NeuroImmune Biology, 2010, , 67-77.	0.2	0
54	The genomic profile of the cerebral cortex after closed head injury in mice: effects of minocycline. Journal of Neural Transmission, 2009, 116, 1-12.	1.4	36

PETER J CRACK

#	Article	IF	CITATIONS
55	Reduction of cerebral infarct volume by apocynin requires pretreatment and is absent in Nox2â€deficient mice. British Journal of Pharmacology, 2009, 156, 680-688.	2.7	119
56	Reactive Oxygen Species Enhance Insulin Sensitivity. Cell Metabolism, 2009, 10, 260-272.	7.2	509
57	A nonfibrin macromolecular cofactor for tPA-mediated plasmin generation following cellular injury. Blood, 2009, 114, 1937-1946.	0.6	46
58	Absence of glutathione peroxidaseâ€1 exacerbates cerebral ischemiaâ€reperfusion injury by reducing postâ€ischemic microvascular perfusion. Journal of Neurochemistry, 2008, 107, 241-252.	2.1	70
59	Modulation of Neuro-Inflammation and Vascular Response by Oxidative Stress Following Cerebral Ischemia-Reperfusion Injury. Current Medicinal Chemistry, 2008, 15, 1-14.	1.2	198
60	Tollâ€like receptors in the brain and their potential roles in neuropathology. Immunology and Cell Biology, 2007, 85, 476-480.	1.0	109
61	Potential Contribution of NF-κB in Neuronal Cell Death in the Glutathione Peroxidase-1 Knockout Mouse in Response to Ischemia-Reperfusion Injury. Stroke, 2006, 37, 1533-1538.	1.0	81
62	Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nature Immunology, 2006, 7, 148-155.	7.0	468
63	Lack of glutathione peroxidase-1 exacerbates Aβ-mediated neurotoxicity in cortical neurons. Journal of Neural Transmission, 2006, 113, 645-657.	1.4	71
64	Glutathione peroxidase-1 contributes to the protection of glutamine synthetase in astrocytes during oxidative stress. Journal of Neural Transmission, 2006, 113, 1145-1155.	1.4	24
65	Glutathione peroxidase 1 and a high cellular glutathione concentration are essential for effective organic hydroperoxide detoxification in astrocytes. Clia, 2006, 54, 873-879.	2.5	46
66	Glutathione peroxidase 1 and glutathione are required to protect mouse astrocytes from iron-mediated hydrogen peroxide toxicity. Journal of Neuroscience Research, 2006, 84, 578-586.	1.3	71
67	Diminished Akt phosphorylation in neurons lacking glutathione peroxidase-1 (Gpx1) leads to increased susceptibility to oxidative stress-induced cell death. Journal of Neurochemistry, 2005, 92, 283-293.	2.1	52
68	Reactive oxygen species and the modulation of strokeâ~†. Free Radical Biology and Medicine, 2005, 38, 1433-1444.	1.3	337
69	Targeted Disruption of SPI3 / Serpinb6 Does Not Result in Developmental or Growth Defects, Leukocyte Dysfunction, or Susceptibility to Stroke. Molecular and Cellular Biology, 2004, 24, 4075-4082.	1.1	49
70	IMPACT OF OXIDATIVE STRESS ON NEURONAL SURVIVAL. Clinical and Experimental Pharmacology and Physiology, 2004, 31, 397-406.	0.9	62
71	Fibroblasts derived from Gpx1 knockout mice display senescent-like features and are susceptible to H2O2-mediated cell death. Free Radical Biology and Medicine, 2004, 36, 53-64.	1.3	67
72	Akt phosphorylation and NFκB activation are counterregulated under conditions of oxidative stress. Experimental Cell Research, 2004, 300, 463-475.	1.2	24

#	Article	IF	CITATIONS
73	Glutathione Peroxidase-1 Contributes to the Neuroprotection Seen in the Superoxide Dismutase-1 Transgenic Mouse in Response to Ischemia/Reperfusion Injury. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 19-22.	2.4	55
74	Overexpression of the chromosome 21 transcription factor Ets2 induces neuronal apoptosis. Neurobiology of Disease, 2003, 14, 349-356.	2.1	49
75	An imbalance in antioxidant defense affects cellular function: the pathophysiological consequences of a reduction in antioxidant defense in the glutathione peroxidase-1 (Gpx1) knockout mouse. Redox Report, 2003, 8, 69-79.	1.4	85
76	Glutathione Peroxidase-1 Contributes to the Neuroprotection Seen in the Superoxide Dismutase-1 Transgenic Mouse in Response to Ischemia/Reperfusion Injury. Journal of Cerebral Blood Flow and Metabolism, 2003, , 19-22.	2.4	19
77	A mouse model of spinal and bulbar muscular atrophy. Human Molecular Genetics, 2002, 11, 2103-2111.	1.4	72
78	Mice Lacking Glutathione Peroxidase-1 Activity Show Increased Tunel Staining and an Accelerated Inflammatory Response in Brain Following a Cold-Induced Injury. Experimental Neurology, 2002, 177, 9-20.	2.0	44
79	Increased infarct size and exacerbated apoptosis in the glutathione peroxidase-1 (Gpx-1) knockout mouse brain in response to ischemia/reperfusion injury. Journal of Neurochemistry, 2001, 78, 1389-1399.	2.1	187
80	The association of metalloendopeptidase EC 3.4.24.15 at the extracellular surface of the AtT-20 cell plasma membrane. Brain Research, 1999, 835, 113-124.	1.1	62
81	Purification, characterisation and distribution of ovine neuronal nitric oxide synthase. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1998, 120, 727-733.	0.7	2
82	The involvement of nitric oxide in the secretion of β-endorphin from the pituitary intermediate lobe of the rat. Brain Research, 1997, 761, 113-120.	1.1	11
83	Characterisation of neurons with nitric oxide synthase immunoreactivity that project to prevertebral ganglia. Journal of the Autonomic Nervous System, 1995, 52, 107-116.	1.9	91
84	Thimerosal blocks stimulated but not basal release of endotheliumâ€derived relaxing factor (EDRF) in dog isolated coronary artery. British Journal of Pharmacology, 1992, 107, 566-572.	2.7	16