
Hanquan Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4803464/publications.pdf Version: 2024-02-01

ΗΔΝΟΠΑΝ SU

#	Article	lF	CITATIONS
1	DNA probes that store mechanical information reveal transient piconewton forces applied by T cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16949-16954.	7.1	96
2	Live-cell super-resolved PAINT imaging of piconewton cellular traction forces. Nature Methods, 2020, 17, 1018-1024.	19.0	85
3	Ratiometric Tension Probes for Mapping Receptor Forces and Clustering at Intermembrane Junctions. Nano Letters, 2016, 16, 4552-4559.	9.1	65
4	Tunable DNA Origami Motors Translocate Ballistically Over μm Distances at nm/s Speeds. Angewandte Chemie - International Edition, 2020, 59, 9514-9521.	13.8	45
5	Seeded Heteroepitaxial Growth of Crystallizable Collagen Triple Helices: Engineering Multifunctional Two-Dimensional Core–Shell Nanostructures. Journal of the American Chemical Society, 2019, 141, 20107-20117.	13.7	42
6	Localized Nanoscale Heating Leads to Ultrafast Hydrogel Volume-Phase Transition. ACS Nano, 2019, 13, 515-525.	14.6	28
7	DNA Gold Nanoparticle Motors Demonstrate Processive Motion with Bursts of Speed Up to 50 nm Per Second. ACS Nano, 2021, 15, 8427-8438.	14.6	28
8	Mechanical Stimulation of Adhesion Receptors Using Light-Responsive Nanoparticle Actuators Enhances Myogenesis. ACS Applied Materials & Interfaces, 2020, 12, 35903-35917.	8.0	24
9	Molecular Tension Probes to Investigate the Mechanopharmacology of Single Cells: A Step toward Personalized Mechanomedicine. Advanced Healthcare Materials, 2018, 7, e1800069.	7.6	17
10	Light-Responsive Polymer Particles as Force Clamps for the Mechanical Unfolding of Target Molecules. Nano Letters, 2018, 18, 2630-2636.	9.1	16
11	Turn-key mapping of cell receptor force orientation and magnitude using a commercial structured illumination microscope. Nature Communications, 2021, 12, 4693.	12.8	10
12	Engineering DNA-Functionalized Nanostructures to Bind Nucleic Acid Targets Heteromultivalently with Enhanced Avidity. Journal of the American Chemical Society, 2020, 142, 9653-9660.	13.7	9
13	Tunable DNA Origami Motors Translocate Ballistically Over μm Distances at nm/s Speeds. Angewandte Chemie, 2020, 132, 9601-9608.	2.0	7
14	Massively Parallelized Molecular Force Manipulation with On-Demand Thermal and Optical Control. Journal of the American Chemical Society, 2021, 143, 19466-19473.	13.7	6
15	DNA Probes that Store Mechanical Information Reveal Transient Piconewton Forces Applied by T Cells. Biophysical Journal, 2020, 118, 247a.	0.5	1
16	Light-Responsive Polymer Particles as Force Clamps for the Mechanical Unfolding of Target Molecules. Biophysical Journal, 2019, 116, 447a.	0.5	0
17	Super-resolved Measurement of Piconewton Receptor Forces via Tension-PAINT. Biophysical Journal, 2020, 118, 284a-285a.	0.5	0
18	Highly Processive DNA Origami Nanoscale Motors. Biophysical Journal, 2020, 118, 479a.	0.5	0

#	Article	IF	CITATIONS
19	Polymer Force Clamps for the Mechanical Unfolding of Target Molecules. Biophysical Journal, 2020, 118, 349a.	0.5	0