Marko Loncar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4803431/publications.pdf

Version: 2024-02-01

76326 102487 9,725 77 40 66 citations h-index g-index papers 81 81 81 6859 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	2022 Roadmap on integrated quantum photonics. JPhys Photonics, 2022, 4, 012501.	4.6	152
2	Probing dark exciton navigation through a local strain landscape in a WSe2 monolayer. Nature Communications, 2022, 13, 232.	12.8	32
3	Extended many-body superradiance in diamond epsilon near-zero metamaterials. Applied Physics Letters, 2022, 120, .	3.3	12
4	Development of hard masks for reactive ion beam angled etching of diamond. Optics Express, 2022, 30, 14189.	3.4	11
5	High-performance modified uni-traveling carrier photodiode integrated on a thin-film lithium niobate platform. Photonics Research, 2022, 10, 1338.	7.0	30
6	Integrated silicon carbide electro-optic modulator. Nature Communications, 2022, 13, 1851.	12.8	46
7	Mechanical Control of a Single Nuclear Spin. Physical Review X, 2022, 12, .	8.9	15
8	Thin-film lithium-niobate electro-optic platform for spectrally tailored dual-comb spectroscopy. Communications Physics, 2022, 5, .	5.3	37
9	Spectrally separable photon-pair generation in dispersion engineered thin-film lithium niobate. Optics Letters, 2022, 47, 2830.	3.3	14
10	Diamond mirrors for high-power continuous-wave lasers. Nature Communications, 2022, 13, 2610.	12.8	9
11	Optical Entanglement of Distinguishable Quantum Emitters. Physical Review Letters, 2022, 128, .	7.8	9
12	Electrical control of surface acoustic waves. Nature Electronics, 2022, 5, 348-355.	26.0	22
13	Diamond quantum nanophotonics and optomechanics. Semiconductors and Semimetals, 2021, 104, 219-251.	0.7	2
14	Integrated photonics on thin-film lithium niobate. Advances in Optics and Photonics, 2021, 13, 242.	25. 5	503
15	High-efficiency and broadband electro-optic frequency combs using coupled lithium-niobate microresonators., 2021,,.		3
16	Telecommunication-wavelength two-dimensional photonic crystal cavities in a thin single-crystal diamond membrane. Applied Physics Letters, 2021, 119, .	3.3	4
17	On-chip electro-optic frequency shifters and beam splitters. Nature, 2021, 599, 587-593.	27.8	78
18	Coherent acoustic control of a single silicon vacancy spin in diamond. Nature Communications, 2020, 11, 193.	12.8	92

#	Article	IF	CITATIONS
19	High- <i>Q</i> Lithium Niobate Microcavities and Their Applications. , 2020, , 1-35.		2
20	Experimental demonstration of memory-enhanced quantum communication. Nature, 2020, 580, 60-64.	27.8	325
21	Design of Efficient Resonator-Enhanced Electro-Optic Frequency Comb Generators. Journal of Lightwave Technology, 2020, 38, 1400-1413.	4.6	25
22	Toward Efficient Microwave-Optical Transduction using Cavity Electro-Optics in Thin-Film Lithium Niobate. , 2020, , .		6
23	High-Q suspended optical resonators in 3C silicon carbide obtained by thermal annealing. Optics Express, 2020, 28, 4938.	3.4	19
24	Wafer-scale low-loss lithium niobate photonic integrated circuits. Optics Express, 2020, 28, 24452.	3.4	98
25	Chip-based self-referencing using integrated lithium niobate waveguides. Optica, 2020, 7, 702.	9.3	63
26	Realization of high-dimensional frequency crystals in electro-optic microcombs. Optica, 2020, 7, 1189.	9.3	54
27	Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction. Optica, 2020, 7, 1714.	9.3	66
28	Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica, 2020, 7, 40.	9.3	172
29	A metasurface-based diamond frequency converter using plasmonic nanogap resonators. Nanophotonics, 2020, 10, 589-595.	6.0	8
30	Electro-optic frequency shifting using coupled lithium-niobate microring resonators. , 2020, , .		0
31	Quantum Interference of Electromechanically Stabilized Emitters in Nanophotonic Devices. Physical Review X, 2019, 9, .	8.9	55
32	Phononic Band Structure Engineering for High- $\langle i \rangle Q \langle i \rangle$ Gigahertz Surface Acoustic Wave Resonators on Lithium Niobate. Physical Review Applied, 2019, 12, .	3.8	70
33	Quantum Network Nodes Based on Diamond Qubits with an Efficient Nanophotonic Interface. Physical Review Letters, 2019, 123, 183602.	7.8	133
34	An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond. Physical Review B, 2019, 100, .	3.2	111
35	Chip-Based Lithium-Niobate Frequency Combs. IEEE Photonics Technology Letters, 2019, 31, 1894-1897.	2.5	18
36	Silicon photodetector for integrated lithium niobate photonics. Applied Physics Letters, 2019, 115, .	3.3	34

#	Article	lF	CITATIONS
37	Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica, 2019, 6, 380.	9.3	181
38	An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator. IEEE Photonics Technology Letters, 2019, 31, 889-892.	2.5	76
39	Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 2019, 568, 373-377.	27.8	527
40	Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nature Communications, 2019, 10, 978.	12.8	243
41	Electronically programmable photonic molecule. Nature Photonics, 2019, 13, 36-40.	31.4	155
42	Microresonator frequency comb generation with simultaneous Kerr and electro-optic nonlinearities. , 2019, , .		3
43	Integrated Lithium Niobate Photonics and Applications. , 2019, , .		1
44	Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides. Optics Letters, 2019, 44, 1222.	3.3	106
45	Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica, 2019, 6, 1498.	9.3	152
46	Microring Electro-optic Frequency Comb Sources for Dual-Comb Spectroscopy. , 2019, , .		5
47	Integrated Lithium Niobate Photonic and Applications. , 2019, , .		0
48	An integrated quantum network node in diamond. , 2019, , .		0
49	Electron-phonon coupling between silicon vacancy centers and optomechanical crystals in diamond. , 2019, , .		0
50	A nanophotonic interface to long-lived quantum memories in diamond. , 2019, , .		0
51	Supercontinuum generation in angle-etched diamond waveguides. Optics Letters, 2019, 44, 4056.	3.3	18
52	Strongly Cavity-Enhanced Spontaneous Emission from Silicon-Vacancy Centers in Diamond. Nano Letters, 2018, 18, 1360-1365.	9.1	112
53	Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562, 101-104.	27.8	1,402
54	Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science, 2018, 362, 662-665.	12.6	189

#	Article	IF	CITATIONS
55	Spectral Alignment of Single-Photon Emitters in Diamond using Strain Gradient. Physical Review Applied, 2018, 10, .	3.8	30
56	Strain engineering of the silicon-vacancy center in diamond. Physical Review B, 2018, 97, .	3.2	171
57	Controlling the coherence of a diamond spin qubit through its strain environment. Nature Communications, 2018, 9, 2012.	12.8	120
58	Nanophotonic lithium niobate electro-optic modulators. Optics Express, 2018, 26, 1547.	3.4	439
59	High-Q chaotic lithium niobate microdisk cavity. Optics Letters, 2018, 43, 2917.	3.3	46
60	Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 2018, 5, 1438.	9.3	392
61	Freestanding nanostructures via reactive ion beam angled etching. APL Photonics, 2017, 2, 051301.	5.7	40
62	Large-scale quantum-emitter arrays in atomically thin semiconductors. Nature Communications, 2017, 8, 15093.	12.8	406
63	Efficient quantum microwave-to-optical conversion using electro-optic nanophotonic coupled resonators. Physical Review A, 2017, 96, .	2.5	55
64	Chaos-assisted broadband momentum transformation in optical microresonators. Science, 2017, 358, 344-347.	12.6	239
65	Fiber-Coupled Diamond Quantum Nanophotonic Interface. Physical Review Applied, 2017, 8, .	3.8	115
66	Quantum Nonlinear Optics with a Germanium-Vacancy Color Center in a Nanoscale Diamond Waveguide. Physical Review Letters, 2017, 118, 223603.	7.8	218
67	Mechanical and optical nanodevices in single-crystal quartz. Applied Physics Letters, 2017, 111, 263103.	3.3	10
68	Competition between Raman and Kerr effects in microresonator comb generation. Optics Letters, 2017, 42, 2786.	3.3	56
69	Monolithic CMOS-compatible zero-index metamaterials. Optics Express, 2017, 25, 12381.	3.4	30
70	Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 2017, 4, 1536.	9.3	571
71	Diamond optomechanical crystals. Optica, 2016, 3, 1404.	9.3	125
72	Faraday cage angled-etching of nanostructures in bulk dielectrics. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	1.2	28

Marko Loncar

#	Article	IF	CITATIONS
73	An integrated diamond nanophotonics platform for quantum-optical networks. Science, 2016, 354, 847-850.	12.6	570
74	Nanofluidics of Single-Crystal Diamond Nanomechanical Resonators. Nano Letters, 2015, 15, 8070-8076.	9.1	27
75	On-chip zero-index metamaterials. Nature Photonics, 2015, 9, 738-742.	31.4	327
76	High quality-factor optical nanocavities in bulk single-crystal diamond. Nature Communications, 2014, 5, 5718.	12.8	196
77	Optical bistability with a repulsive optical force in coupled silicon photonic crystal membranes. Applied Physics Letters, 2013, 103, .	3.3	14