José A Castro-Osma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4803240/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of High Molecular Weight Stereo-Di-Block Copolymers Driven by a Co-Initiator Free Catalyst. Polymers, 2022, 14, 232.	2.0	3
2	Synthesis of Nonisocyanate Poly(hydroxy)urethanes from Bis(cyclic carbonates) and Polyamines. Polymers, 2022, 14, 2719.	2.0	6
3	Zinc-Catalyzed Hydroalkoxylation/Cyclization of Alkynyl Alcohols. Inorganic Chemistry, 2021, 60, 5322-5332.	1.9	5
4	Fast Addition of sâ€Block Organometallic Reagents to CO ₂ â€Derived Cyclic Carbonates at Room Temperature, Under Air, and in 2â€Methyltetrahydrofuran. ChemSusChem, 2021, 14, 2084-2092.	3.6	17
5	Ring-Opening Copolymerization of Cyclohexene Oxide and Cyclic Anhydrides Catalyzed by Bimetallic Scorpionate Zinc Catalysts. Polymers, 2021, 13, 1651.	2.0	5
6	Heteroscorpionate Rare-Earth Catalysts for the Low-Pressure Coupling Reaction of CO ₂ and Cyclohexene Oxide. Organometallics, 2021, 40, 1503-1514.	1.1	11
7	The Effect of WS2 Nanosheets on the Non-Isothermal Cold- and Melt-Crystallization Kinetics of Poly(I-lactic acid) Nanocomposites. Polymers, 2021, 13, 2214.	2.0	5
8	Polyester Polymeric Nanoparticles as Platforms in the Development of Novel Nanomedicines for Cancer Treatment. Cancers, 2021, 13, 3387.	1.7	24
9	Tuning the Cytotoxicity of Bis-Phosphino-Amines Ruthenium(II) Para-Cymene Complexes for Clinical Development in Breast Cancer. Pharmaceutics, 2021, 13, 1559.	2.0	3
10	Efficient Production of Poly(Cyclohexene Carbonate) via ROCOP of Cyclohexene Oxide and CO2 Mediated by NNO-Scorpionate Zinc Complexes. Polymers, 2020, 12, 2148.	2.0	8
11	Bimetallic Zinc Catalysts for Ring-Opening Copolymerization Processes. Inorganic Chemistry, 2020, 59, 8412-8423.	1.9	21
12	Screening and Preliminary Biochemical and Biological Studies of [RuCl(<i>p</i> -cymene)(<i>N</i> , <i>N</i> -bis(diphenylphosphino)-isopropylamine)][BF ₄] in Breast Cancer Models. ACS Omega, 2019, 4, 13005-13014.	1.6	7
13	Efficient CO ₂ fixation into cyclic carbonates catalyzed by NNO-scorpionate zinc complexes. Dalton Transactions, 2019, 48, 10733-10742.	1.6	25
14	Synthesis of helical aluminium catalysts for cyclic carbonate formation. Dalton Transactions, 2019, 48, 4218-4227.	1.6	33
15	Influence of the Counterion on the Synthesis of Cyclic Carbonates Catalyzed by Bifunctional Aluminum Complexes. Inorganic Chemistry, 2019, 58, 3396-3408.	1.9	46
16	Synthesis of Bio-Derived Cyclic Carbonates from Renewable Resources. ACS Sustainable Chemistry and Engineering, 2019, 7, 20126-20138.	3.2	48
17	Trastuzumab-Targeted Biodegradable Nanoparticles for Enhanced Delivery of Dasatinib in HER2+ Metastasic Breast Cancer. Nanomaterials, 2019, 9, 1793.	1.9	40
18	Study of the Coordination Modes of Hybrid NNCp Cyclopentadienyl/Scorpionate Ligands in Ir Compounds. Inorganic Chemistry, 2019, 58, 900-908.	1.9	4

JOSé A CASTRO-OSMA

#	Article	IF	CITATIONS
19	Bifunctional Aluminum Catalysts for the Chemical Fixation of Carbon Dioxide into Cyclic Carbonates. ACS Sustainable Chemistry and Engineering, 2018, 6, 5322-5332.	3.2	82
20	Amidinate Aluminium Complexes as Catalysts for Carbon Dioxide Fixation into Cyclic Carbonates. ChemCatChem, 2018, 10, 2271-2277.	1.8	62
21	Development of hydroxy-containing imidazole organocatalysts for CO ₂ fixation into cyclic carbonates. Catalysis Science and Technology, 2018, 8, 1981-1987.	2.1	78
22	Alternating Copolymerization of Epoxides and Anhydrides Catalyzed by Aluminum Complexes. ACS Omega, 2018, 3, 17581-17589.	1.6	21
23	Versatile organoaluminium catalysts based on heteroscorpionate ligands for the preparation of polyesters. Dalton Transactions, 2018, 47, 7471-7479.	1.6	21
24	Ringâ€opening polymerization and copolymerization of cyclic esters catalyzed by amidinate aluminum complexes. Journal of Polymer Science Part A, 2017, 55, 2397-2407.	2.5	32
25	An Efficient and Versatile Lanthanum Heteroscorpionate Catalyst for Carbon Dioxide Fixation into Cyclic Carbonates. ChemSusChem, 2017, 10, 2886-2890.	3.6	90
26	Aminophosphine ligands as a privileged platform for development of antitumoral ruthenium(<scp>ii</scp>) arene complexes. Dalton Transactions, 2017, 46, 16113-16125.	1.6	27
27	One omponent Aluminum(heteroscorpionate) Catalysts for the Formation of Cyclic Carbonates from Epoxides and Carbon Dioxide. ChemSusChem, 2017, 10, 1175-1185.	3.6	68
28	Synthesis of Chiral Cyclic Carbonates via Kinetic Resolution of Racemic Epoxides and Carbon Dioxide. Symmetry, 2016, 8, 4.	1.1	25
29	An Efficient and Tunable Route to Bis(1,2,3â€ŧriazolâ€1â€yl)methaneâ€Based Nitrogen Compounds. European Journal of Organic Chemistry, 2016, 2016, 682-687.	1.2	13
30	Importance of Micropore–Mesopore Interfaces in Carbon Dioxide Capture by Carbonâ€Based Materials. Angewandte Chemie - International Edition, 2016, 55, 9173-9177.	7.2	66
31	Synthesis of Oxazolidinones from Epoxides and Isocyanates Catalysed by Aluminium Heteroscorpionate Complexes. ChemCatChem, 2016, 8, 2100-2108.	1.8	36
32	Cr(salophen) Complex Catalyzed Cyclic Carbonate Synthesis at Ambient Temperature And Pressure. ACS Catalysis, 2016, 6, 5012-5025.	5.5	261
33	Synthesis of Cyclic Carbonates Catalysed by Chromium and Aluminium Salphen Complexes. Chemistry - A European Journal, 2016, 22, 2100-2107.	1.7	116
34	Heteroscorpionate Rare-Earth Catalysts for the Hydroalkoxylation/Cyclization of Alkynyl Alcohols. Organometallics, 2016, 35, 1802-1812.	1.1	21
35	Ring-opening copolymerisation of cyclohexene oxide and carbon dioxide catalysed by scorpionate zinc complexes. Polymer Chemistry, 2016, 7, 6475-6484.	1.9	26
36	Highlights from the Faraday Discussion on Carbon Dioxide Utilisation, Sheffield, UK, September 2015. Chemical Communications, 2016, 52, 232-238.	2.2	0

JOSé A CASTRO-OSMA

#	Article	IF	CITATIONS
37	Synthesis of Cyclic Carbonates Catalysed by Aluminium Heteroscorpionate Complexes. Chemistry - A European Journal, 2015, 21, 9850-9862.	1.7	104
38	Atom efficiency in small molecule and macromolecule synthesis: general discussion. Faraday Discussions, 2015, 183, 97-123.	1.6	1
39	New catalysts for carboxylation of propylene glycol to propylene carbonate via high-throughput screening. Faraday Discussions, 2015, 183, 19-30.	1.6	9
40	Synthesis and structural characterization of amido heteroscorpionate rare-earth metal complexes and hydroamination of aminoalkenes. New Journal of Chemistry, 2015, 39, 7672-7681.	1.4	16
41	Quinine catalysed asymmetric Michael additions in a sustainable solvent. RSC Advances, 2015, 5, 3678-3685.	1.7	23
42	Catalytic behaviour in the ring-opening polymerisation of organoaluminiums supported by bulky heteroscorpionate ligands. Dalton Transactions, 2015, 44, 12388-12400.	1.6	35
43	Development of a Halideâ€Free Aluminiumâ€Based Catalyst for the Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide. Chemistry - A European Journal, 2014, 20, 15005-15008.	1.7	81
44	Synthesis and structural characterization of amido scorpionate rare earth metals complexes. Dalton Transactions, 2014, 43, 9586.	1.6	15
45	Synthesis of cyclic carbonates catalysed by aluminium heteroscorpionate complexes. Catalysis Science and Technology, 2014, 4, 1674-1684.	2.1	87
46	Synthesis of Cyclic Carbonates from Polyols and Carbon Dioxide, Urea or Carbon Monoxide. Current Green Chemistry, 2014, 1, 257-272.	0.7	10
47	Ring-Opening (ROP) versus Ring-Expansion (REP) Polymerization of ε-Caprolactone To Give Linear or Cyclic Polycaprolactones. Macromolecules, 2013, 46, 6388-6394.	2.2	75
48	Heteroscorpionate aluminium complexes as chiral building blocks to engineer helical architectures. Dalton Transactions, 2013, 42, 14240.	1.6	13
49	Synthesis, structural characterization and catalytic evaluation of the ring-opening polymerization of discrete five-coordinate alkyl aluminium complexes. Dalton Transactions, 2013, 42, 9325.	1.6	50
50	New Highly Active Heteroscorpionate-Containing Lutetium Catalysts for the Hydroamination of Aminoalkenes: Isolation and Structural Characterization of a Dipyrrolidinide–Lutetium Complex. Organometallics, 2012, 31, 2244-2255.	1.1	39
51	Synthesis of cyclic carbonates using monometallic, and helical bimetallic, aluminium complexes. Catalysis Science and Technology, 2012, 2, 1021.	2.1	72
52	Heteroscorpionate rare-earth initiators for the controlled ring-opening polymerization of cyclic esters. Dalton Transactions, 2011, 40, 4687.	1.6	37
53	Neutral and Cationic Aluminum Complexes Supported by Acetamidate and Thioacetamidate Heteroscorpionate Ligands as Initiators for Ring-Opening Polymerization of Cyclic Esters. Organometallics, 2011, 30, 1507-1522.	1.1	77
54	Straightforward Generation of Helical Chirality Driven by a Versatile Heteroscorpionate Ligand: Selfâ€Assembly of a Metal Helicate by Using CHπ Interactions. Chemistry - A European Journal, 2010, 16, 8615-8619.	1.7	31

#	Article	IF	CITATIONS
55	Multiresidue determination of organochlorines in fish oil by GC–MS: A new strategy in the sample preparation. Talanta, 2010, 81, 887-893.	2.9	16
56	Closing the loop in the synthesis of heteroscorpionate-based aluminium helicates: catalytic studies for cyclic carbonate synthesis. Dalton Transactions, 0, , .	1.6	0