
Chenju Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4802960/publications.pdf

Version: 2024-02-01

CHENULLANC

#	Article	IF	CITATIONS
1	A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere, 2008, 73, 1540-1543.	4.2	1,163
2	Identification of Sulfate and Hydroxyl Radicals in Thermally Activated Persulfate. Industrial & Engineering Chemistry Research, 2009, 48, 5558-5562.	1.8	1,043
3	Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere, 2007, 66, 106-113.	4.2	671
4	Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate–thiosulfate redox couple. Chemosphere, 2004, 55, 1213-1223.	4.2	511
5	Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion. Chemosphere, 2004, 55, 1225-1233.	4.2	331
6	Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20°C. Science of the Total Environment, 2006, 370, 271-277.	3.9	328
7	Feasibility study of ultraviolet activated persulfate oxidation of phenol. Chemosphere, 2011, 82, 1168-1172.	4.2	219
8	Potential for activated persulfate degradation of BTEX contamination. Water Research, 2008, 42, 4091-4100.	5.3	215
9	pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene. Journal of Contaminant Hydrology, 2009, 106, 173-182.	1.6	187
10	Mass Transfer and Chemical Oxidation of Naphthalene Particles with Zerovalent Iron Activated Persulfate. Environmental Science & Technology, 2010, 44, 8203-8208.	4.6	181
11	Persulfate oxidation of trichloroethylene with and without iron activation in porous media. Chemosphere, 2008, 70, 426-435.	4.2	163
12	Thermally Activated Persulfate Oxidation of Trichloroethylene:  Experimental Investigation of Reaction Orders. Industrial & Engineering Chemistry Research, 2008, 47, 2912-2918.	1.8	136
13	Oxidative degradation of TMAH solution with UV persulfate activation. Chemical Engineering Journal, 2014, 254, 472-478.	6.6	134
14	Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene. Journal of Hazardous Materials, 2011, 192, 500-506.	6.5	133
15	Trichloroethylene Degradation by Zero Valent Iron Activated Persulfate Oxidation. Environmental Engineering Science, 2008, 25, 1071-1078.	0.8	127
16	Treatment of Trichloroethylene by Adsorption and Persulfate Oxidation in Batch Studies. Industrial & Engineering Chemistry Research, 2009, 48, 8373-8380.	1.8	103
17	Oxidative Degradation of MTBE by Pyrite-Activated Persulfate: Proposed Reaction Pathways. Industrial & Engineering Chemistry Research, 2010, 49, 8858-8864.	1.8	75
18	In situ iron activated persulfate oxidative fluid sparging treatment of TCE contamination — A proof of concept study. Journal of Contaminant Hydrology, 2008, 100, 91-100.	1.6	61

CHENJU LIANG

#	Article	IF	CITATIONS
19	Hydroxypropyl-β-Cyclodextrin-Mediated Iron-Activated Persulfate Oxidation of Trichloroethylene and Tetrachloroethylene. Industrial & Engineering Chemistry Research, 2007, 46, 6466-6479.	1.8	58
20	Iron (II) Activated Persulfate Oxidation of MGP Contaminated Soil. Soil and Sediment Contamination, 2007, 16, 523-537.	1.1	57
21	A titration method for determining individual oxidant concentration in the dual sodium persulfate and hydrogen peroxide oxidation system. Chemosphere, 2018, 198, 297-302.	4.2	53
22	Persulfate regeneration of trichloroethylene spent activated carbon. Journal of Hazardous Materials, 2009, 168, 187-192.	6.5	52
23	Remediation of Diesel-Contaminated Soils Using Persulfate Under Alkaline Condition. Water, Air, and Soil Pollution, 2012, 223, 4605-4614.	1.1	51
24	Carbon Tetrachloride Degradation by Alkaline Ascorbic Acid Solution. Environmental Science & Technology, 2013, 47, 3299-3307.	4.6	48
25	Evaluation of persulfate oxidative wet scrubber for removing BTEX gases. Journal of Hazardous Materials, 2009, 164, 571-579.	6.5	46
26	Trichloroethylene Degradation by Various Forms of Iron Activated Persulfate Oxidation with or without the Assistance of Ascorbic Acid. Industrial & Engineering Chemistry Research, 2016, 55, 2302-2308.	1.8	43
27	Identification of Active Radical Species in Alkaline Persulfate Oxidation. Water Environment Research, 2015, 87, 656-659.	1.3	39
28	Evaluation of activated carbon for remediating benzene contamination: Adsorption and oxidative regeneration. Journal of Hazardous Materials, 2010, 182, 544-551.	6.5	31
29	Characterization of a Sodium Persulfate Sustained Release Rod for in Situ Chemical Oxidation Groundwater Remediation. Industrial & Engineering Chemistry Research, 2017, 56, 5271-5276.	1.8	31
30	A study of the applicability of various activated persulfate processes for the treatment of 2,4-dichlorophenoxyacetic acid. International Journal of Environmental Science and Technology, 2014, 11, 483-492.	1.8	26
31	Reductive lindane degradation with tea extracts in aqueous phase. Chemical Engineering Journal, 2018, 338, 157-165.	6.6	26
32	Reduction of nitrobenzene with alkaline ascorbic acid: Kinetics and pathways. Journal of Hazardous Materials, 2016, 302, 137-143.	6.5	25
33	Assessing acute toxicity potential of persulfate ISCO treated water. Chemosphere, 2013, 93, 2711-2716.	4.2	24
34	Impacts of ISCO Persulfate, Peroxide and Permanganate Oxidants on Soils: Soil Oxidant Demand and Soil Properties. Soil and Sediment Contamination, 2012, 21, 701-719.	1.1	20
35	Aquatic acute toxicity assessments of molybdenum (+VI) to Daphnia magna. Chemosphere, 2016, 147, 82-87.	4.2	19
36	A conceptual study on the formulation of a permeable reactive pavement with activated carbon additives for controlling the fate of non-point source environmental organic contaminants. Chemosphere, 2018, 193, 438-446.	4.2	17

CHENJU LIANG

#	Article	IF	CITATIONS
37	A column study of persulfate chemical oxidative regeneration of toluene gas saturated activated carbon. Chemical Engineering Journal, 2019, 375, 122034.	6.6	17
38	Granular activated carbon/pyrite composites for environmental application: Synthesis and characterization. Journal of Hazardous Materials, 2012, 231-232, 120-126.	6.5	12
39	Evaluation of reverse osmosis and nanofiltration for in situ persulfate remediated groundwater. Desalination, 2007, 208, 238-259.	4.0	11
40	A laboratory treatability study for pilotâ€scale soil washing of Cr, Cu, Ni, and Zn contaminated soils. Environmental Progress and Sustainable Energy, 2012, 31, 351-360.	1.3	11
41	Reductive dechlorination of carbon tetrachloride using buffered alkaline ascorbic acid. Chemosphere, 2015, 136, 27-31.	4.2	11
42	Persistent organic pollutant lindane degradation by alkaline cold-brew green tea. Chemosphere, 2019, 232, 281-286.	4.2	11
43	Impurity evaporation and void formation in Sn/Cu solder joints. Materials Chemistry and Physics, 2019, 225, 153-158.	2.0	11
44	Foam flushing with soil vapor extraction for enhanced treatment of diesel contaminated soils in a one-dimensional column. Chemosphere, 2021, 285, 131471.	4.2	11
45	1,3-Dinitrobenzene reductive degradation by alkaline ascorbic acid – Reaction mechanisms, degradation pathways and reagent optimization. Chemosphere, 2017, 166, 482-488.	4.2	10
46	Persulfate Chemical Functionalization of Carbon Nanotubes and Associated Adsorption Behavior in Aqueous Phase. Industrial & Engineering Chemistry Research, 2016, 55, 6060-6068.	1.8	9
47	Oxidative degradation of tetramethylammonium hydroxide (TMAH) by UV/persulfate and associated acute toxicity assessment. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2017, 52, 930-937.	0.9	9
48	Evaluation of surfactant flushing for remediating EDC-tar contamination. Journal of Contaminant Hydrology, 2015, 177-178, 158-166.	1.6	8
49	Natural organic activator quercetin for persulfate oxidative degradation of halogenated hydrocarbons. Environmental Science: Water Research and Technology, 2019, 5, 1064-1071.	1.2	6
50	Assessment of green tea reductive degradation of halogenated solvents. Chemosphere, 2021, 267, 129196.	4.2	6
51	Passive membrane sampler for assessing VOCs contamination in unsaturated and saturated media. Journal of Hazardous Materials, 2021, 401, 123387.	6.5	5
52	Evaluation of the Engineering Properties of Powdered Activated Carbon Amendments in Porous Asphalt Pavement. Processes, 2021, 9, 582.	1.3	5
53	Reductive Degradation of 1,1,1-Trichloroethane with Alkaline Green Tea/Ferrous Ion in Aqueous Phase. Industrial & Engineering Chemistry Research, 2020, 59, 19093-19101.	1.8	3
54	Bisulfite reduction of soil iron for the reductive degradation of trichloroethylene. Chemosphere, 2022, 286, 131818.	4.2	3

#	Article	IF	CITATIONS
55	CHARACTERISTICS AND TRANSPORT PROPERTIES OF TWO MODIFIED ZERO VALENT IRON. , 2009, , .		1
56	Reductive degradation of carbon tetrachloride with guava leaf extract. Journal of Industrial and Engineering Chemistry, 2022, 113, 275-282.	2.9	1