Peter C Doherty #### List of Publications by Citations Source: https://exaly.com/author-pdf/4802899/peter-c-doherty-publications-by-citations.pdf Version: 2024-04-09 This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above. The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article. 80 22,783 312 142 h-index g-index citations papers 25,061 10.6 6.54 324 avg, IF L-index ext. citations ext. papers | # | Paper | IF | Citations | |-----|--|--------|-----------| | 312 | Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. <i>Nature</i> , 1996 , 380, 630-3 | 50.4 | 1115 | | 311 | Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. <i>Nature</i> , 1996 , 382, 171-4 | 50.4 | 950 | | 310 | Immunological surveillance against altered self components by sensitised T lymphocytes in lymphocytic choriomeningitis. <i>Nature</i> , 1974 , 251, 547-8 | 50.4 | 703 | | 309 | Virus-specific CD8+ T cells in primary and secondary influenza pneumonia. <i>Immunity</i> , 1998 , 8, 683-91 | 32.3 | 593 | | 308 | Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. <i>Nature</i> , 1975 , 256, 50-2 | 50.4 | 582 | | 307 | The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. <i>Immunity</i> , 2009 , 30, 566-75 | 32.3 | 530 | | 306 | Virus-specific CD8+ T-cell memory determined by clonal burst size. <i>Nature</i> , 1994 , 369, 652-4 | 50.4 | 459 | | 305 | Influenza. <i>Nature Reviews Disease Primers</i> , 2018 , 4, 3 | 51.1 | 437 | | 304 | Effector CD4+ and CD8+ T-cell mechanisms in the control of respiratory virus infections. <i>Immunological Reviews</i> , 1997 , 159, 105-17 | 11.3 | 380 | | 303 | Altered peptidase and viral-specific T cell response in LMP2 mutant mice. <i>Immunity</i> , 1994 , 1, 533-41 | 32.3 | 362 | | 302 | Cell-mediated protection in influenza infection. <i>Emerging Infectious Diseases</i> , 2006 , 12, 48-54 | 10.2 | 356 | | 301 | A question of self-preservation: immunopathology in influenza virus infection. <i>Immunology and Cell Biology</i> , 2007 , 85, 85-92 | 5 | 355 | | 300 | Roles of alpha beta and gamma delta T cell subsets in viral immunity. <i>Annual Review of Immunology</i> , 1992 , 10, 123-51 | 34.7 | 344 | | 299 | TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 5306-11 | 11.5 | 337 | | 298 | Structural determinants of T-cell receptor bias in immunity. <i>Nature Reviews Immunology</i> , 2006 , 6, 883-9 | 9436.5 | 287 | | 297 | Influenza and the challenge for immunology. <i>Nature Immunology</i> , 2006 , 7, 449-55 | 19.1 | 282 | | 296 | Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection. <i>Nature Immunology</i> , 2013 , 14, 480-8 | 19.1 | 254 | ### (2011-2001) | 295 | Measuring the diaspora for virus-specific CD8+ T cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2001 , 98, 6313-8 | 11.5 | 250 | |-------------|---|-------|-----| | 294 | Accessing complexity: the dynamics of virus-specific T cell responses. <i>Annual Review of Immunology</i> , 2000 , 18, 561-92 | 34.7 | 243 | | 293 | The collagen binding alpha1beta1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection. <i>Immunity</i> , 2004 , 20, 167-79 | 32.3 | 240 | | 292 | Compromised influenza virus-specific CD8(+)-T-cell memory in CD4(+)-T-cell-deficient mice. <i>Journal of Virology</i> , 2002 , 76, 12388-93 | 6.6 | 239 | | 291 | A previously unrecognized H-2D(b)-restricted peptide prominent in the primary influenza A virus-specific CD8(+) T-cell response is much less apparent following secondary challenge. <i>Journal of Virology</i> , 2000 , 74, 3486-93 | 6.6 | 224 | | 290 | The discovery of MHC restriction. <i>Trends in Immunology</i> , 1997 , 18, 14-7 | | 211 | | 289 | Early hypercytokinemia is associated with interferon-induced transmembrane protein-3 dysfunction and predictive of fatal H7N9 infection. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 769-74 | 11.5 | 205 | | 288 | Genes required for cytotoxicity against virus-infected target cells in K and D regions of H-2 complex. <i>Nature</i> , 1975 , 254, 269-70 | 50.4 | 199 | | 287 | Inhibition of MHC class I-restricted antigen presentation by gamma 2-herpesviruses. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2000 , 97, 8455-60 | 11.5 | 187 | | 286 | Differential antigen presentation regulates the changing patterns of CD8+ T cell immunodominance in primary and secondary influenza virus infections. <i>Journal of Experimental Medicine</i> , 2003 , 198, 399-410 | 16.6 | 182 | | 285 | Forced degradation of Fas inhibits apoptosis in adenovirus-infected cells. <i>Nature</i> , 1998 , 392, 726-30 | 50.4 | 181 | | 284 | Diversity of epitope and cytokine profiles for primary and secondary influenza a virus-specific CD8+ T cell responses. <i>Journal of Immunology</i> , 2001 , 166, 4627-33 | 5.3 | 178 | | 283 | Human mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18-dependent activation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 10133-8 | 11.5 | 173 | | 282 | Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8+ T cells. <i>Nature Communications</i> , 2015 , 6, 6833 | 17.4 | 168 | | 281 | Hierarchies in cytokine expression profiles for acute and resolving influenza virus-specific CD8+ T cell responses: correlation of cytokine profile and TCR avidity. <i>Journal of Immunology</i> , 2004 , 172, 5553 | -6₫·3 | 167 | | 2 80 | T cell receptor Ediversity inversely correlates with pathogen-specific antibody levels in human cytomegalovirus infection. <i>Science Translational Medicine</i> , 2012 , 4, 128ra42 | 17.5 | 165 | | 279 | Dissection of an inflammatory process induced by CD8+ T cells. <i>Trends in Immunology</i> , 1990 , 11, 55-9 | | 155 | | 278 | Paired analysis of TCR\(\frac{1}{2}\) nd TCR\(\frac{1}{2}\) hains at the single-cell level in mice. Journal of Clinical Investigation, 2011 , 121, 288-95 | 15.9 | 153 | | 277 | Immunological surveillance of tumors in the context of major histocompatibility complex restriction of T cell function. <i>Advances in Cancer Research</i> , 1984 , 42, 1-65 | 5.9 | 151 | |-------------|--|---------------------|-----| | 276 | Methods for comparing the diversity of samples of the T cell receptor repertoire. <i>Journal of Immunological Methods</i> , 2007 , 321, 182-95 | 2.5 | 148 | | 275 | Pathogenesis of an infectious mononucleosis-like disease induced by a murine gamma-herpesvirus: role for a viral superantigen?. <i>Journal of Experimental Medicine</i> , 1997 , 185, 1641-50 | 16.6 | 142 | | 274 | Pathogenesis of Hong Kong H5N1 influenza virus NS gene reassortants in mice: the role of cytokines and B- and T-cell responses. <i>Journal of General Virology</i> , 2005 , 86, 1121-1130 | 4.9 | 140 | | 273 | Establishment and persistence of virus-specific CD4+ and CD8+ T cell memory. <i>Immunological Reviews</i> , 1996 , 150, 23-44 | 11.3 | 140 | | 272 | A virus-specific CD8+ T cell immunodominance hierarchy determined by antigen dose and precursor frequencies. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 994-9 | 11.5 | 139 | | 271 | The kinase mTOR modulates the antibody response to provide cross-protective immunity to lethal infection with influenza virus. <i>Nature Immunology</i> , 2013 , 14, 1266-76 | 19.1 | 137 | | 270 | The role of antigen in the localization of naive, acutely activated, and memory CD8(+) T cells to the lung during influenza pneumonia. <i>Journal of Immunology</i> , 2001 , 167, 6983-90 | 5.3 | 137 | | 269 | Changing patterns of dominance in the CD8+ T cell response during acute and persistent murine gamma-herpesvirus infection. <i>European Journal of Immunology</i> , 1999 , 29, 1059-67 | 6.1 | 135 | | 268 | Cross-reactive CD8+ T-cell immunity between the pandemic H1N1-2009 and H1N1-1918 influenza A viruses. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 125 | 9 9- 654 | 134 | | 267 | In vivo proliferation of name and memory influenza-specific CD8(+) T cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1999 , 96, 8597-602 | 11.5 | 130 | | 266 | Primary CTL response magnitude in mice is determined
by the extent of naive T cell recruitment and subsequent clonal expansion. <i>Journal of Clinical Investigation</i> , 2010 , 120, 1885-94 | 15.9 | 129 | | 265 | Clearance of an influenza A virus by CD4+ T cells is inefficient in the absence of B cells. <i>Journal of Virology</i> , 1998 , 72, 882-5 | 6.6 | 126 | | 264 | Conserved T cell receptor usage in primary and recall responses to an immunodominant influenza virus nucleoprotein epitope. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 4942-7 | 11.5 | 123 | | 263 | Lack of prominent peptide-major histocompatibility complex features limits repertoire diversity in virus-specific CD8+ T cell populations. <i>Nature Immunology</i> , 2005 , 6, 382-9 | 19.1 | 123 | | 262 | Respiratory epithelial cells in innate immunity to influenza virus infection. <i>Cell and Tissue Research</i> , 2011 , 343, 13-21 | 4.2 | 122 | | 261 | Sharing of T cell receptors in antigen-specific responses is driven by convergent recombination. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 18691-6 | 11.5 | 122 | | 2 60 | Regulation of ZAP-70 activation and TCR signaling by two related proteins, Sts-1 and Sts-2. <i>Immunity</i> , 2004 , 20, 37-46 | 32.3 | 122 | | 259 | Thymic lymphoproliferative disease after successful correction of CD40 ligand deficiency by gene transfer in mice. <i>Nature Medicine</i> , 1998 , 4, 1253-60 | 50.5 | 121 | | |-----|--|------|-----|--| | 258 | Addition of a prominent epitope affects influenza A virus-specific CD8+ T cell immunodominance hierarchies when antigen is limiting. <i>Journal of Immunology</i> , 2006 , 177, 2917-25 | 5:3 | 121 | | | 257 | Major transplantation antigens, viruses, and specificity of surveillance T cells. <i>Contemporary Topics in Immunobiology</i> , 1977 , 7, 179-220 | | 121 | | | 256 | Preexisting CD8+ T-cell immunity to the H7N9 influenza A virus varies across ethnicities. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1049-54 | 11.5 | 119 | | | 255 | CD4(+) T cell-mediated control of a gamma-herpesvirus in B cell-deficient mice is mediated by IFN-gamma. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1999 , 96, 5135-40 | 11.5 | 119 | | | 254 | Analysis of clonotype distribution and persistence for an influenza virus-specific CD8+ T cell response. <i>Immunity</i> , 2003 , 18, 549-59 | 32.3 | 116 | | | 253 | Dissecting the host response to a gamma-herpesvirus. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2001 , 356, 581-93 | 5.8 | 114 | | | 252 | Diminished primary and secondary influenza virus-specific CD8(+) T-cell responses in CD4-depleted Ig(-/-) mice. <i>Journal of Virology</i> , 2000 , 74, 9762-5 | 6.6 | 114 | | | 251 | Protection and compensation in the influenza virus-specific CD8+ T cell response. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 7235-40 | 11.5 | 108 | | | 250 | Age-Related Decline in Primary CD8 T Cell Responses Is Associated with the Development of Senescence in Virtual Memory CD8 T Cells. <i>Cell Reports</i> , 2018 , 23, 3512-3524 | 10.6 | 107 | | | 249 | Combined NKT cell activation and influenza virus vaccination boosts memory CTL generation and protective immunity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 3330-5 | 11.5 | 106 | | | 248 | The origins of SARS-CoV-2: A critical review. <i>Cell</i> , 2021 , 184, 4848-4856 | 56.2 | 103 | | | 247 | Analysis of the virus-specific and nonspecific B cell response to a persistent B-lymphotropic gammaherpesvirus. <i>Journal of Immunology</i> , 2000 , 164, 1820-8 | 5.3 | 102 | | | 246 | Profound protection against respiratory challenge with a lethal H7N7 influenza A virus by increasing the magnitude of CD8(+) T-cell memory. <i>Journal of Virology</i> , 2000 , 74, 11690-6 | 6.6 | 101 | | | 245 | A gamma-herpesvirus sneaks through a CD8(+) T cell response primed to a lytic-phase epitope. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1999 , 96, 9281-6 | 11.5 | 101 | | | 244 | Models for recognition of virally modified cells by immune thymus-derived lymphocytes. <i>Immunogenetics</i> , 1976 , 3, 517-524 | 3.2 | 97 | | | 243 | Virus-specific CD8(+) T cell numbers are maintained during gamma-herpesvirus reactivation in CD4-deficient mice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1998 , 95, 15565-70 | 11.5 | 95 | | | 242 | Characteristics of virus-specific CD8(+) T cells in the liver during the control and resolution phases of influenza pneumonia. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 1998 95 13812-7 | 11.5 | 95 | | | 241 | Kinetic analysis of the specific host response to a murine gammaherpesvirus. <i>Journal of Virology</i> , 1998 , 72, 943-9 | 6.6 | 95 | |-----|---|--------|----| | 240 | Contemporary analysis of MHC-related immunodominance hierarchies in the CD8+ T cell response to influenza A viruses. <i>Journal of Immunology</i> , 2000 , 165, 2404-9 | 5.3 | 94 | | 239 | An early CD4+ T cell-dependent immunoglobulin A response to influenza infection in the absence of key cognate T-B interactions. <i>Journal of Experimental Medicine</i> , 2003 , 198, 1011-21 | 16.6 | 92 | | 238 | Suboptimal SARS-CoV-2-specific CD8 T cell response associated with the prominent HLA-A*02:01 phenotype. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 24384-24391 | 11.5 | 92 | | 237 | Sizing up the key determinants of the CD8(+) T cell response. <i>Nature Reviews Immunology</i> , 2015 , 15, 70 | 531665 | 88 | | 236 | Localization of CD4+ T cell epitope hotspots to exposed strands of HIV envelope glycoprotein suggests structural influences on antigen processing. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2001 , 98, 4587-92 | 11.5 | 84 | | 235 | CD8+ T-cell memory to viruses. Current Opinion in Immunology, 1994, 6, 545-52 | 7.8 | 84 | | 234 | Non-antigen-specific B-cell activation following murine gammaherpesvirus infection is CD4 independent in vitro but CD4 dependent in vivo. <i>Journal of Virology</i> , 1999 , 73, 1075-9 | 6.6 | 83 | | 233 | Mucosal HIV-1 pox virus prime-boost immunization induces high-avidity CD8+ T cells with regime-dependent cytokine/granzyme B profiles. <i>Journal of Immunology</i> , 2007 , 178, 2370-9 | 5.3 | 75 | | 232 | Early establishment of diverse T cell receptor profiles for influenza-specific CD8(+)CD62L(hi) memory T cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 9184-9 | 11.5 | 74 | | 231 | Toward a broadly protective influenza vaccine. <i>Journal of Clinical Investigation</i> , 2008 , 118, 3273-5 | 15.9 | 73 | | 230 | Highly pathological influenza A virus infection is associated with augmented expression of PD-1 by functionally compromised virus-specific CD8+ T cells. <i>Journal of Virology</i> , 2014 , 88, 1636-51 | 6.6 | 70 | | 229 | Heterogeneity of effector phenotype for acute phase and memory influenza A virus-specific CTL. <i>Journal of Immunology</i> , 2007 , 179, 64-70 | 5.3 | 70 | | 228 | Clonally diverse CD38HLA-DRCD8 T cells persist during fatal H7N9 disease. <i>Nature Communications</i> , 2018 , 9, 824 | 17.4 | 69 | | 227 | Differentiation-dependent functional and epigenetic landscapes for cytokine genes in virus-specific CD8+ T cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 15306-11 | 11.5 | 69 | | 226 | Limiting dilution analysis of the specificity of influenza-immune cytotoxic T cells. <i>Cellular Immunology</i> , 1982 , 67, 49-59 | 4.4 | 68 | | 225 | Molecular basis for universal HLA-A*0201-restricted CD8+ T-cell immunity against influenza viruses. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 4440-5 | 11.5 | 68 | | 224 | The numbers game for virus-specific CD8+ T cells. <i>Science</i> , 1998 , 280, 227 | 33.3 | 67 | ### (2001-2020) | 223 | The Origin of COVID-19 and Why It Matters. <i>American Journal of Tropical Medicine and Hygiene</i> , 2020 , 103, 955-959 | 3.2 | 66 | |-----|---|------------------|----| | 222 | Effects of fourH-2K mutations on virus-induced antigens recognized by cytotoxic T cells. <i>Immunogenetics</i> , 1976 , 3, 541-548 | 3.2 | 64 | | 221 | Phenotypic analysis of the inflammatory exudate in murine lymphocytic choriomeningitis. <i>Journal of Experimental Medicine</i> , 1987 , 165, 1539-51 | 16.6 | 63 | | 220 | Tuning into immunological dissonance: an experimental model for infectious mononucleosis. <i>Current Opinion in Immunology</i> ,
1997 , 9, 477-83 | 7.8 | 61 | | 219 | Quantification of repertoire diversity of influenza-specific epitopes with predominant public or private TCR usage. <i>Journal of Immunology</i> , 2006 , 177, 6705-12 | 5.3 | 61 | | 218 | Requirement for CD40 ligand, CD4(+) T cells, and B cells in an infectious mononucleosis-like syndrome. <i>Journal of Virology</i> , 1999 , 73, 9650-4 | 6.6 | 60 | | 217 | Systematic identification of immunodominant CD8+ T-cell responses to influenza A virus in HLA-A2 individuals. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 9178-83 | 11.5 | 59 | | 216 | Method for assessing the similarity between subsets of the T cell receptor repertoire. <i>Journal of Immunological Methods</i> , 2008 , 329, 67-80 | 2.5 | 58 | | 215 | Defects in T-cell-mediated immunity to influenza virus in murine Wiskott-Aldrich syndrome are corrected by oncoretroviral vector-mediated gene transfer into repopulating hematopoietic cells. <i>Blood</i> , 2003 , 102, 3108-16 | 2.2 | 58 | | 214 | Ecological analysis of antigen-specific CTL repertoires defines the relationship between naive and immune T-cell populations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 1839-44 | 11.5 | 57 | | 213 | Constraints within major histocompatibility complex class I restricted peptides: presentation and consequences for T-cell recognition. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 5534-9 | 11.5 | 55 | | 212 | Consequences of immunodominant epitope deletion for minor influenza virus-specific CD8+-T-cell responses. <i>Journal of Virology</i> , 2005 , 79, 4329-39 | 6.6 | 55 | | 211 | Reconstruction of the 1918 influenza virus: unexpected rewards from the past. MBio, 2012, 3, | 7.8 | 54 | | 210 | Virus-specific memory T cells are Pgp-1+ and can be selectively activated with phorbol ester and calcium ionophore. <i>Cellular Immunology</i> , 1988 , 113, 268-77 | 4.4 | 54 | | 209 | Immunity to seasonal and pandemic influenza A viruses. <i>Microbes and Infection</i> , 2011 , 13, 489-501 | 9.3 | 53 | | 208 | Protective efficacy of cross-reactive CD8+ T cells recognising mutant viral epitopes depends on peptide-MHC-I structural interactions and T cell activation threshold. <i>PLoS Pathogens</i> , 2010 , 6, e100103 | 9 ^{7.6} | 52 | | 207 | Contribution of T cell receptor affinity to overall avidity for virus-specific CD8+ T cell responses. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 11432-7 | 11.5 | 52 | | 206 | Concurrent naive and memory CD8(+) T cell responses to an influenza A virus. <i>Journal of Immunology</i> , 2001 , 167, 2753-8 | 5.3 | 52 | | 205 | Early priming minimizes the age-related immune compromise of CD8+ T cell diversity and function. <i>PLoS Pathogens</i> , 2012 , 8, e1002544 | 7.6 | 51 | |-----|--|------|----| | 204 | Immunoproteasome subunit deficiencies impact differentially on two immunodominant influenza virus-specific CD8+ T cell responses. <i>Journal of Immunology</i> , 2006 , 177, 7680-8 | 5-3 | 51 | | 203 | Functional implications of T cell receptor diversity. <i>Current Opinion in Immunology</i> , 2009 , 21, 286-90 | 7.8 | 50 | | 202 | Pause on avian flu transmission research. <i>Science</i> , 2012 , 335, 400-1 | 33.3 | 50 | | 201 | Experimental louping-ill in sheep and lambs. I. Viraemia and the antibody response. <i>Journal of Comparative Pathology</i> , 1971 , 81, 291-8 | 1 | 50 | | 200 | Compromised respiratory function in lethal influenza infection is characterized by the depletion of type I alveolar epithelial cells beyond threshold levels. <i>American Journal of Physiology - Lung Cellular and Molecular Physiology</i> , 2013 , 304, L481-8 | 5.8 | 49 | | 199 | IL-18, but not IL-12, is required for optimal cytokine production by influenza virus-specific CD8+ T cells. <i>European Journal of Immunology</i> , 2007 , 37, 368-75 | 6.1 | 48 | | 198 | An unexpected antibody response to an engineered influenza virus modifies CD8+ T cell responses. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 2764-9 | 11.5 | 48 | | 197 | Hidden epitopes emerge in secondary influenza virus-specific CD8+ T cell responses. <i>Journal of Immunology</i> , 2007 , 178, 3091-8 | 5.3 | 48 | | 196 | Establishment and recall of CD8+ T-cell memory in a model of localized transient infection. <i>Immunological Reviews</i> , 2006 , 211, 133-45 | 11.3 | 48 | | 195 | Lymphocytic choriomeningitis virus induces a chronic wasting disease in mice lacking class I major histocompatibility complex glycoproteins. <i>Journal of Neuroimmunology</i> , 1993 , 46, 11-7 | 3.5 | 48 | | 194 | Quantitative analysis of the acute and long-term CD4(+) T-cell response to a persistent gammaherpesvirus. <i>Journal of Virology</i> , 1999 , 73, 4279-83 | 6.6 | 48 | | 193 | Isolation of virus from brain after immunosuppression of mice with latent herpes simplex. <i>Nature</i> , 1981 , 291, 432-3 | 50.4 | 47 | | 192 | Virus-specific and bystander CD8+ T-cell proliferation in the acute and persistent phases of a gammaherpesvirus infection. <i>Journal of Virology</i> , 2001 , 75, 4435-8 | 6.6 | 46 | | 191 | Acute experimental allergic encephalomyelitis in radiation bone marrow chimeras between high and low susceptible strains of mice. <i>Immunogenetics</i> , 1986 , 24, 309-15 | 3.2 | 46 | | 190 | Epitope-specific TCRbeta repertoire diversity imparts no functional advantage on the CD8+ T cell response to cognate viral peptides. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 2034-9 | 11.5 | 45 | | 189 | Cell cycle-related acquisition of cytotoxic mediators defines the progressive differentiation to effector status for virus-specific CD8+ T cells. <i>Journal of Immunology</i> , 2008 , 181, 3818-22 | 5.3 | 45 | | 188 | Location rather than CD62L phenotype is critical in the early establishment of influenza-specific CD8+ T cell memory. <i>Proceedings of the National Academy of Sciences of the United States of America</i> | 11.5 | 45 | ## (2003-2000) | 187 | Postexposure vaccination massively increases the prevalence of gamma-herpesvirus-specific CD8+ T cells but confers minimal survival advantage on CD4-deficient mice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2000 , 97, 2725-30 | 11.5 | 44 | |-----|---|------|----| | 186 | Different rules govern help for cytotoxic T cells and B cells. <i>Nature</i> , 1978 , 276, 829-31 | 50.4 | 43 | | 185 | Acute emergence and reversion of influenza A virus quasispecies within CD8+ T cell antigenic peptides. <i>Nature Communications</i> , 2013 , 4, 2663 | 17.4 | 42 | | 184 | Clearance of Sendai virus by CD8+ T cells requires direct targeting to virus-infected epithelium. <i>European Journal of Immunology</i> , 1995 , 25, 111-6 | 6.1 | 42 | | 183 | Consequences of a single Ir-gene defect for the pathogenesis of lymphocytic choriomeningitis. <i>Immunogenetics</i> , 1985 , 21, 581-9 | 3.2 | 42 | | 182 | Characteristics of secondary cytotoxic T-cell responses in mice infected with influenza A viruses. <i>Cellular Immunology</i> , 1978 , 36, 345-53 | 4.4 | 42 | | 181 | Protection against a lethal avian influenza A virus in a mammalian system. <i>Journal of Virology</i> , 1999 , 73, 1453-9 | 6.6 | 42 | | 180 | Disregulated influenza A virus-specific CD8+ T cell homeostasis in the absence of IFN-gamma signaling. <i>Journal of Immunology</i> , 2007 , 178, 7616-22 | 5.3 | 41 | | 179 | Immune T cells can protect or induce fatal neurological disease in murine lymphocytic choriomeningitis. <i>Cellular Immunology</i> , 1985 , 90, 401-7 | 4.4 | 41 | | 178 | Heightened self-reactivity associated with selective survival, but not expansion, of naWe virus-specific CD8+ T cells in aged mice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 1333-8 | 11.5 | 40 | | 177 | Recalling the Future: Immunological Memory Toward Unpredictable Influenza Viruses. <i>Frontiers in Immunology</i> , 2019 , 10, 1400 | 8.4 | 40 | | 176 | Tracking phenotypically and functionally distinct T cell subsets via T cell repertoire diversity. <i>Molecular Immunology</i> , 2008 , 45, 607-18 | 4.3 | 40 | | 175 | The context of epitope presentation can influence functional quality of recalled influenza A virus-specific memory CD8+ T cells. <i>Journal of Immunology</i> , 2007 , 179, 2187-94 | 5.3 | 40 | | 174 | Analysis of virus-specific CD4(+) t cells during long-term gammaherpesvirus infection. <i>Journal of Virology</i> , 2001 , 75, 7744-8 | 6.6 | 40 | | 173 | Perforin and Fas in murine gammaherpesvirus-specific CD8(+) T cell control and morbidity. <i>Journal of General Virology</i> , 2001 , 82, 1971-1981 | 4.9 | 39 | | 172 | Interplay between chromatin remodeling and epigenetic changes during lineage-specific commitment to granzyme B expression. <i>Journal of Immunology</i> , 2009 , 183, 7063-72 | 5.3 | 37 | | 171 |
Affinity thresholds for naive CD8+ CTL activation by peptides and engineered influenza A viruses. <i>Journal of Immunology</i> , 2011 , 187, 5733-44 | 5.3 | 37 | | 170 | Clustering of Th cell epitopes on exposed regions of HIV envelope despite defects in antibody activity. <i>Journal of Immunology</i> , 2003 , 171, 4140-8 | 5.3 | 37 | | 169 | The acute inflammatory process in murine lymphocytic choriomeningitis is dependent on Lyt-2+ immune T cells. <i>Cellular Immunology</i> , 1987 , 107, 8-14 | 4.4 | 37 | |-----|--|-------------------|----| | 168 | Characterization of innate responses to influenza virus infection in a novel lung type I epithelial cell model. <i>Journal of General Virology</i> , 2014 , 95, 350-362 | 4.9 | 36 | | 167 | Differential tumor necrosis factor receptor 2-mediated editing of virus-specific CD8+ effector T cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 3545-50 | 0 ^{11.5} | 36 | | 166 | Characterization of CD8+ T cell repertoire diversity and persistence in the influenza A virus model of localized, transient infection. <i>Seminars in Immunology</i> , 2004 , 16, 179-84 | 10.7 | 36 | | 165 | Virus-specific immunity after gene therapy in a murine model of severe combined immunodeficiency. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1999 , 96, 232-7 | 11.5 | 36 | | 164 | Expression of Pgp-1 (or Ly24) by subpopulations of mouse thymocytes and activated peripheral T lymphocytes. <i>European Journal of Immunology</i> , 1987 , 17, 137-40 | 6.1 | 36 | | 163 | Reduced functional capacity of CD8+ T cells expanded by post-exposure vaccination of gamma-herpesvirus-infected CD4-deficient mice. <i>Journal of Immunology</i> , 2002 , 168, 3477-83 | 5.3 | 35 | | 162 | Extent of gamma delta T cell involvement in the pneumonia caused by Sendai virus. <i>Cellular Immunology</i> , 1992 , 143, 183-93 | 4.4 | 34 | | 161 | Virus infections in mice with targeted gene disruptions. <i>Current Opinion in Immunology</i> , 1993 , 5, 479-83 | 7.8 | 34 | | 160 | H-2 gene expression in required for T cell-mediated lysis of virus-infected target cells. <i>Nature</i> , 1977 , 266, 361-2 | 50.4 | 34 | | 159 | Reproducible selection of high avidity CD8+ T-cell clones following secondary acute virus infection. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 1485-90 | 11.5 | 33 | | 158 | Structural basis for enabling T-cell receptor diversity within biased virus-specific CD8+ T-cell responses. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 9536-41 | 11.5 | 33 | | 157 | A correlation between function and selected measures of T cell avidity in influenza virus-specific CD8+ T cell responses. <i>European Journal of Immunology</i> , 2006 , 36, 2951-9 | 6.1 | 33 | | 156 | Killer T cells in influenza 2008 , 120, 186-96 | | 32 | | 155 | Cutting edge: Tissue-resident memory CTL down-regulate cytolytic molecule expression following virus clearance. <i>Journal of Immunology</i> , 2007 , 179, 7220-4 | 5.3 | 32 | | 154 | Breakdown of the bloodcerebrospinal fluid barrier to immunoglobulin in mice injected intracerebrally with a neurotropic influenza A virus. Post-exposure treatment with monoclonal antibody promotes recovery. <i>Journal of Neuroimmunology</i> , 1981 , 1, 227-37 | 3.5 | 32 | | 153 | Transmission studies resume for avian flu. <i>Science</i> , 2013 , 339, 520-1 | 33.3 | 31 | | 152 | Granzyme K expressing cytotoxic T lymphocytes protects against influenza virus in granzyme AB-/-mice. <i>Viral Immunology</i> , 2008 , 21, 341-6 | 1.7 | 31 | | 151 | Complete modification of TCR specificity and repertoire selection does not perturb a CD8+ T cell immunodominance hierarchy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 19408-13 | 11.5 | 31 | |-----|--|--------------|----| | 150 | An in vivo cytotoxicity threshold for influenza A virus-specific effector and memory CD8(+) T cells.
Journal of Immunology, 2007 , 178, 1285-92 | 5.3 | 31 | | 149 | Immune exhaustion: driving virus-specific CD8+ T cells to death. <i>Trends in Microbiology</i> , 1993 , 1, 207-9 | 12.4 | 31 | | 148 | Use it or lose it: establishment and persistence of T cell memory. <i>Frontiers in Immunology</i> , 2012 , 3, 357 | 8.4 | 30 | | 147 | WASP- mice exhibit defective immune responses to influenza A virus, Streptococcus pneumoniae, and Mycobacterium bovis BCG. <i>Experimental Hematology</i> , 2005 , 33, 443-51 | 3.1 | 30 | | 146 | Screening monoclonal antibodies for cross-reactivity in the ferret model of influenza infection. <i>Journal of Immunological Methods</i> , 2008 , 336, 71-7 | 2.5 | 29 | | 145 | Decreased IL-10 and IL-13 production and increased CD44hi T cell recruitment contribute to Leishmania major immunity induced by non-persistent parasites. <i>European Journal of Immunology</i> , 2008 , 38, 3090-100 | 6.1 | 29 | | 144 | Prevalence and activation phenotype of Sendai virus-specific CD4+ T cells. <i>Virology</i> , 1995 , 210, 179-85 | 3.6 | 29 | | 143 | Central nervous system infection and immune response in mice inoculated into the lip with herpes simplex virus type 1. <i>Journal of Neuroimmunology</i> , 1982 , 2, 295-305 | 3.5 | 29 | | 142 | H-2 compatibility requirement for virus-specific T-cell-mediated cytolysis. Evaluation of the role of H-2I region and non-H-2 genes in regulating immune response. <i>Journal of Experimental Medicine</i> , 1976 , 144, 519-32 | 16.6 | 28 | | 141 | Inactivated Influenza Vaccine That Provides Rapid, Innate-Immune-System-Mediated Protection and Subsequent Long-Term Adaptive Immunity. <i>MBio</i> , 2015 , 6, e01024-15 | 7.8 | 27 | | 140 | Evaluation of recombinant influenza virus-simian immunodeficiency virus vaccines in macaques.
Journal of Virology, 2009 , 83, 7619-28 | 6.6 | 27 | | 139 | Virus-specific CD8+ T cells in the liver: armed and ready to kill. <i>Journal of Immunology</i> , 2007 , 178, 2737- | 45 .3 | 27 | | 138 | Louping-ill encephalomyelitis in the sheep. I. The relationship of viraemia and the antibody response to susceptibility. <i>Journal of Comparative Pathology</i> , 1971 , 81, 521-9 | 1 | 27 | | 137 | Epigenetic plasticity of Cd8a locus during CD8(+) T-cell development and effector differentiation and reprogramming. <i>Nature Communications</i> , 2014 , 5, 3547 | 17.4 | 26 | | 136 | Granzyme A expression reveals distinct cytolytic CTL subsets following influenza A virus infection. <i>European Journal of Immunology</i> , 2009 , 39, 1203-10 | 6.1 | 26 | | 135 | Pathogenesis of murine gammaherpesvirus-68 infection in interleukin-6-deficient mice. <i>Virology</i> , 1998 , 249, 359-66 | 3.6 | 26 | | 134 | Experimental louping-ill in sheep and lambs. II. Neuropathology. <i>Journal of Comparative Pathology</i> , 1971 , 81, 331-7 | 1 | 26 | | 133 | Louping-ill encephalomyelitis in the sheep. II. Distribution of virus and lesions in nervous tissue.
Journal of Comparative Pathology, 1971 , 81, 531-6 | 1 | 26 | |-----|---|------|----| | 132 | LymphocyteMacrophage Interactions and Macrophage Activation in the Expression of Antimicrobial Immunity in Vivo 1976 , 367-400 | | 26 | | 131 | CD4 T help promotes influenza virus-specific CD8 T cell memory by limiting metabolic dysfunction. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 4481-4488 | 11.5 | 26 | | 130 | Differential host response, rather than early viral replication efficiency, correlates with pathogenicity caused by influenza viruses. <i>PLoS ONE</i> , 2013 , 8, e74863 | 3.7 | 25 | | 129 | Quantitative analysis of long-term virus-specific CD8+-T-cell memory in mice challenged with unrelated pathogens. <i>Journal of Virology</i> , 2003 , 77, 7756-63 | 6.6 | 25 | | 128 | Louping-ill encephalomyelitis in the sheep. IV. Nature of the perivascular inflammatory reaction. <i>Journal of Comparative Pathology</i> , 1971 , 81, 545-9 | 1 | 25 | | 127 | The influenza virus-specific CTL immunodominance hierarchy in mice is determined by the relative frequency of high-avidity T cells. <i>Journal of Immunology</i> , 2014 , 192, 4061-8 | 5.3 | 24 | | 126 | Effector CD8+ T cells recovered from an influenza pneumonia differentiate to a state of focused gene expression. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 6074-9 | 11.5 | 24 | | 125 | Human T -cell receptor repertoire is shaped by influenza viruses, age and tissue compartmentalisation. <i>Clinical and Translational Immunology</i> , 2019 , 8, e1079 | 6.8 | 23 | | 124 | Consequences of viral infections for lymphocyte compartmentalization and homeostasis. <i>Seminars in Immunology</i> , 1997 , 9, 365-73 | 10.7 | 23 | | 123 | Contributions of host and donor T cells to the
inflammatory process in murine lymphocytic choriomeningitis. <i>Cellular Immunology</i> , 1988 , 116, 475-81 | 4.4 | 23 | | 122 | Inhibition of allergic encephalomyelitis by the iron chelating agent desferrioxamine: differential effect depending on type of sensitizing encephalitogen. <i>Journal of Neuroimmunology</i> , 1988 , 17, 127-35 | 3.5 | 23 | | 121 | Specific and nonspecific T-cell recruitment in viral meningitis: possible implications for autoimmunity. <i>Cellular Immunology</i> , 1983 , 76, 397-401 | 4.4 | 23 | | 120 | Peritoneal macrophages as target cells for measuring virus-specific T cell mediated cytotoxicity in vitro. <i>Journal of Immunological Methods</i> , 1975 , 8, 263-6 | 2.5 | 23 | | 119 | Louping-ill encephalomyelitis in the sheep. 3. Immunoglobulins in cerebrospinal fluid. <i>Journal of Comparative Pathology</i> , 1971 , 81, 537-43 | 1 | 23 | | 118 | Absence of a functional defect in CD8+ T cells during primary murine gammaherpesvirus-68 infection of I-A(b-/-) mice. <i>Journal of General Virology</i> , 2003 , 84, 337-341 | 4.9 | 22 | | 117 | Physiological numbers of CD4+ T cells generate weak recall responses following influenza virus challenge. <i>Journal of Immunology</i> , 2010 , 184, 1721-7 | 5.3 | 21 | | 116 | The Nobel Lectures in Immunology The Nobel Prize for Physiology or Medicine, 1996 awarded to. <i>Scandinavian Journal of Immunology</i> , 1997 , 46, 421-422 | 3.4 | 21 | | 115 | The new numerology of immunity mediated by virus-specific CD8(+) T cells. <i>Current Opinion in Microbiology</i> , 1998 , 1, 419-22 | 7.9 | 20 | |-----|--|------|----| | 114 | hsp65 mRNA+ macrophages and gamma delta T cells in influenza virus-infected mice depleted of the CD4+ and CD8+ lymphocyte subsets. <i>Microbial Pathogenesis</i> , 1993 , 14, 75-84 | 3.8 | 20 | | 113 | Cross-reactivity patterns of vaccinia-specific cytotoxic T lymphocytes from H-2Kb mutants. <i>Immunogenetics</i> , 1983 , 17, 79-87 | 3.2 | 20 | | 112 | Reconstitution of Early Lymphoid Proliferation and Immune Function in Jak3-Deficient Mice by Interleukin-3. <i>Blood</i> , 1999 , 94, 1906-1914 | 2.2 | 20 | | 111 | Memory precursor phenotype of CD8+ T cells reflects early antigenic experience rather than memory numbers in a model of localized acute influenza infection. <i>European Journal of Immunology</i> , 2011 , 41, 682-93 | 6.1 | 19 | | 110 | Cell-mediated immunity and the CNS a key role for Interferon. <i>Trends in Neurosciences</i> , 1985 , 8, 41-42 | 13.3 | 19 | | 109 | Visualizing CTL activity for different CD8+ effector T cells supports the idea that lower TCR/epitope avidity may be advantageous for target cell killing. <i>Cell Death and Differentiation</i> , 2009 , 16, 537-42 | 12.7 | 18 | | 108 | Terminal deoxynucleotidyltransferase is required for the establishment of private virus-specific CD8+ TCR repertoires and facilitates optimal CTL responses. <i>Journal of Immunology</i> , 2008 , 181, 2556-62 | 5.3 | 18 | | 107 | T cell epitope "hotspots" on the HIV Type 1 gp120 envelope protein overlap with tryptic fragments displayed by mass spectrometry. <i>AIDS Research and Human Retroviruses</i> , 2005 , 21, 165-70 | 1.6 | 18 | | 106 | Gamma delta T cells from influenza-infected mice develop a natural killer cell phenotype following culture. <i>Cellular Immunology</i> , 1994 , 159, 94-102 | 4.4 | 18 | | 105 | Vaccines and cytokine-mediated pathology in RSV infection. <i>Trends in Microbiology</i> , 1994 , 2, 148-9; discussion 149-50 | 12.4 | 18 | | 104 | Heat-shock proteins and the gamma delta T cell response in virus infections: implications for autoimmunity. <i>Seminars in Immunopathology</i> , 1991 , 13, 11-24 | | 18 | | 103 | Role of the major histocompatibility complex in targeting effector T cells into a site of virus infection. <i>European Journal of Immunology</i> , 1986 , 16, 1237-42 | 6.1 | 18 | | 102 | Fixing an irrelevant TCR alpha chain reveals the importance of TCR beta diversity for optimal TCR alpha beta pairing and function of virus-specific CD8+ T cells. <i>European Journal of Immunology</i> , 2010 , 40, 2470-81 | 6.1 | 17 | | 101 | Immunogenetic analysis of cellular interactions governing the recruitment of T lymphocytes and monocytes in lymphocytic choriomeningitis virus-induced immunopathology. <i>Clinical Immunology and Immunopathology</i> , 1988 , 47, 19-26 | | 17 | | 100 | Division-linked differentiation can account for CD8+ T-cell phenotype in vivo. <i>European Journal of Immunology</i> , 2009 , 39, 67-77 | 6.1 | 16 | | 99 | Effect of MHC class I diversification on influenza epitope-specific CD8+ T cell precursor frequency and subsequent effector function. <i>Journal of Immunology</i> , 2011 , 186, 6319-28 | 5.3 | 16 | | 98 | Preemptive priming readily overcomes structure-based mechanisms of virus escape. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 5570-5 | 11.5 | 15 | | 97 | Limited breadth of a T-helper cell response to a human immunodeficiency virus envelope protein.
Journal of Virology, 2003 , 77, 4231-6 | 6.6 | 15 | |----|--|------|----| | 96 | Anti-asialo GM1 eliminates both inflammatory process and cytotoxic T-cell function in the lymphocytic choriomeningitis adoptive transfer model. <i>Cellular Immunology</i> , 1987 , 107, 1-7 | 4.4 | 15 | | 95 | Induction of protective CD4+ T cell-mediated immunity by a Leishmania peptide delivered in recombinant influenza viruses. <i>PLoS ONE</i> , 2012 , 7, e33161 | 3.7 | 15 | | 94 | Diverse heterologous primary infections radically alter immunodominance hierarchies and clinical outcomes following H7N9 influenza challenge in mice. <i>PLoS Pathogens</i> , 2015 , 11, e1004642 | 7.6 | 14 | | 93 | On the nose: shared themes for the sensory and immune self. <i>Nature Immunology</i> , 2003 , 4, 1043-5 | 19.1 | 14 | | 92 | Limiting the available T cell receptor repertoire modifies acute lymphocytic choriomeningitis virus-induced immunopathology. <i>Journal of Neuroimmunology</i> , 1994 , 51, 147-52 | 3.5 | 14 | | 91 | Transience of MHC Class I-restricted antigen presentation after influenza A virus infection. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 6724-9 | 11.5 | 13 | | 90 | Protective memory responses are modulated by priming events prior to challenge. <i>Journal of Virology</i> , 2010 , 84, 1047-56 | 6.6 | 12 | | 89 | HIV vaccine rationale, design and testing. Current HIV Research, 2005, 3, 107-12 | 1.3 | 12 | | 88 | Louping-ill encephalomyelitis in the sheep. V. Histopathogenesis of the fatal disease. <i>Journal of Comparative Pathology</i> , 1972 , 82, 337-44 | 1 | 12 | | 87 | Turnover of T cells in murine gammaherpesvirus 68-infected mice. <i>Journal of Virology</i> , 1999 , 73, 7866-9 | 6.6 | 12 | | 86 | Influenza epitope-specific CD8+ T cell avidity, but not cytokine polyfunctionality, can be determined by TCRIŁlonotype. <i>Journal of Immunology</i> , 2010 , 185, 6850-6 | 5.3 | 11 | | 85 | The tetramer transformation. <i>Journal of Immunology</i> , 2011 , 187, 5-6 | 5.3 | 11 | | 84 | Narrowed TCR diversity for immunised mice challenged with recombinant influenza A-HIV Env(311-320) virus. <i>Vaccine</i> , 2009 , 27, 6755-61 | 4.1 | 11 | | 83 | The Nobel Lectures in Immunology. The Nobel Prize for Physiology or Medicine, 1996. Cell mediated immunity in virus infections. <i>Scandinavian Journal of Immunology</i> , 1997 , 46, 527-40 | 3.4 | 11 | | 82 | Homogenization of TCR repertoires within secondary CD62Lhigh and CD62Llow virus-specific CD8+T cell populations. <i>Journal of Immunology</i> , 2008 , 180, 7938-47 | 5.3 | 11 | | 81 | The limits of protection by "memory" T cells in Ig-/- mice persistently infected with a gamma-herpesvirus. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 2017-22 | 11.5 | 11 | | 80 | Frequency of influenza-responsive cytolytic T-lymphocyte precursors in the thymus and spleen of unprimed mice. <i>Cellular Immunology</i> , 1984 , 84, 403-8 | 4.4 | 11 | #### (2009-1992) | 79 | Analyzing the distribution of cells expressing mRNA for T cell receptor gamma and delta chains in a virus-induced inflammatory process. <i>Cellular Immunology</i> , 1992 , 143, 55-65 | 4.4 | 10 | |----|--|------|----| | 78 | A recombinant Sendai virus is controlled by CD4+ effector T cells responding to a secreted human immunodeficiency virus type 1 envelope glycoprotein. <i>Journal of Virology</i> , 2007 , 81, 12535-42 | 6.6 | 9 | | 77 | Crystal-ball gazingthe future of immunological research viewed from the cutting edge. <i>Clinical and Experimental Immunology</i> , 2007 , 147, 1-10 | 6.2 | 9 | | 76 | Negative selection experiments support the idea that T-T help is required for the H-Y specific cytotoxic T cell response. <i>Cellular Immunology</i> , 1981 , 60, 347-53 | 4.4 | 9 | | 75 | The response to H-2-different virus-infected cells is mediated by long-lived T lymphocytes and is diminished by prior
virus priming in a syngeneic environment. <i>Cellular Immunology</i> , 1981 , 61, 220-4 | 4.4 | 9 | | 74 | Potential killers exposed: tracking endogenous influenza-specific CD8 T cells. <i>Immunology and Cell Biology</i> , 2018 , 96, 1104-1119 | 5 | 8 | | 73 | Helping themselves: optimal virus-specific CD4 T cell responses require help via CD4 T cell licensing of dendritic cells. <i>Journal of Immunology</i> , 2014 , 193, 5420-33 | 5.3 | 8 | | 72 | Multiplexed combinatorial tetramer staining in a mouse model of virus infection. <i>Journal of Immunological Methods</i> , 2010 , 360, 157-61 | 2.5 | 8 | | 71 | Cell mediated immunity in virus infections. <i>Bioscience Reports</i> , 1997 , 17, 367-87 | 4.1 | 8 | | 70 | Sindbis virus vectors elicit hemagglutinin-specific humoral and cellular immune responses and offer a dose-sparing strategy for vaccination. <i>Vaccine</i> , 2008 , 26, 5641-8 | 4.1 | 8 | | 69 | CD8+ T-cells: are they sufficient to prevent, contain or eradicate HIV-1 infection?. <i>Current Drug Targets Infectious Disorders</i> , 2005 , 5, 113-9 | | 8 | | 68 | Cutting edge: culture with high doses of viral peptide induces previously unprimed CD8(+) T cells to produce cytokine. <i>Journal of Immunology</i> , 2001 , 167, 2437-40 | 5.3 | 8 | | 67 | Inflammation in virus infections. Seminars in Virology, 1993, 4, 117-122 | | 8 | | 66 | Size and frequency characteristics of alpha beta and gamma delta T cells in the spleens of normal and cyclophosphamide-suppressed virus-infected chickens. <i>Cellular Immunology</i> , 1991 , 136, 242-50 | 4.4 | 8 | | 65 | Differential effect of hybrid resistance on the localization of virus-immune effector T cells to spleen and brain. <i>Immunogenetics</i> , 1986 , 24, 409-15 | 3.2 | 8 | | 64 | Immune cellular networks underlying recovery from influenza virus infection in acute hospitalized patients. <i>Nature Communications</i> , 2021 , 12, 2691 | 17.4 | 8 | | 63 | Extrinsically derived TNF is primarily responsible for limiting antiviral CD8+ T cell response magnitude. <i>PLoS ONE</i> , 2017 , 12, e0184732 | 3.7 | 7 | | 62 | Q&A: What have we found out about the influenza A (H1N1) 2009 pandemic virus?. <i>Journal of Biology</i> , 2009 , 8, 69 | | 7 | | 61 | Consequences of suboptimal priming are apparent for low-avidity T-cell responses. <i>Immunology and Cell Biology</i> , 2012 , 90, 216-23 | 5 | 7 | |----|---|---------------|---| | 60 | CD154+ CD4+ T-cell dependence for effective memory influenza virus-specific CD8+ T-cell responses. <i>Immunology and Cell Biology</i> , 2014 , 92, 605-11 | 5 | 6 | | 59 | The role of epigenetics in the acquisition and maintenance of effector function in virus-specific CD8 T cells. <i>IUBMB Life</i> , 2010 , 62, 519-26 | 4.7 | 6 | | 58 | Endings and beginnings. Cellular and Molecular Life Sciences, 2007, 64, 1-2 | 10.3 | 6 | | 57 | The terminology problem for T cells: a discussion paper. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2000 , 355, 361-2 | 5.8 | 6 | | 56 | Immunohistochemical analysis of the involvement of F4/80 and Ia-positive macrophages in mouse liver infected with lymphocytic choriomeningitis virus. <i>Journal of Leukocyte Biology</i> , 1986 , 40, 617-28 | 6.5 | 6 | | 55 | Rejection of allogeneic tumor cells growing in mouse cerebrospinal fluid. Functional analysis of the inflammatory process. <i>Journal of Neuroimmunology</i> , 1981 , 1, 93-9 | 3.5 | 6 | | 54 | "Physiological interaction" does not explain the H-2 requirement for recognition of virus-infected cells by cytotoxic T cells. <i>The Australian Journal of Experimental Biology and Medical Science</i> , 1976 , 54, 413-22 | | 6 | | 53 | Louping-ill encephalomyelitis in the sheep. VII. Influence of immune status on neuropathology.
Journal of Comparative Pathology, 1973 , 83, 481-91 | 1 | 6 | | 52 | Dangerous for ferrets: lethal for humans?. <i>BMC Biology</i> , 2012 , 10, 10 | 7.3 | 5 | | 51 | Influenza A virus-specific CD8 T-cell responses: from induction to function. Future Virology, 2010 , 5, 175 | -183 | 5 | | 50 | The pas de deux of viruses and CD8 T cells. <i>Immunological Reviews</i> , 2002 , 185, 39-49 | 11.3 | 5 | | 49 | The Keys to Cell-Mediated Immunity. JAMA - Journal of the American Medical Association, 1995, 274, 100 | 52 7.4 | 5 | | 48 | Some problem areas in the interaction between viruses and the immune system. <i>Immunology and Cell Biology</i> , 1987 , 65 (Pt 4), 279-86 | 5 | 5 | | 47 | Thymocytes can be stimulated to give a strong vaccinia virus-immune cytotoxic T lymphocyte response. <i>Journal of Immunological Methods</i> , 1981 , 43, 79-85 | 2.5 | 5 | | 46 | Competition within the virus-specific CD4 T-cell pool limits the T follicular helper response after influenza infection. <i>Immunology and Cell Biology</i> , 2016 , 94, 729-40 | 5 | 5 | | 45 | Fixed expression of single influenza virus-specific TCR chains demonstrates the capacity for TCR ⊞ and Ethain diversity in the face of peptide-MHC class I specificity. <i>Journal of Immunology</i> , 2015 , 194, 898-910 | 5.3 | 4 | | 44 | Open letter to the Hon Tony Abbott MP. <i>Medical Journal of Australia</i> , 2014 , 201, 252 | 4 | 4 | | 43 | Rules to NorimeNby. <i>Nature Immunology</i> , 2009 , 10, 14-6 | 19.1 | 4 | |----|--|------|---| | 42 | The challenge of viral immunity. <i>Immunity</i> , 2007 , 27, 363-5 | 32.3 | 4 | | 41 | Burnet Oration: living in the Burnet lineage. <i>Immunology and Cell Biology</i> , 1999 , 77, 167-76 | 5 | 4 | | 40 | Reconstitution of Early Lymphoid Proliferation and Immune Function in Jak3-Deficient Mice by Interleukin-3. <i>Blood</i> , 1999 , 94, 1906-1914 | 2.2 | 4 | | 39 | Q&A: What do we know about influenza and what can we do about it?. <i>Journal of Biology</i> , 2009 , 8, 46 | | 3 | | 38 | A five-residue HIV envelope helper T cell determinant: does this peptide-MHC interaction leave the binding groove half empty?. <i>AIDS Research and Human Retroviruses</i> , 2002 , 18, 1141-4 | 1.6 | 3 | | 37 | A monoclonal antibody to an interspecies major histocompatibility determinant inhibits a virus-specific T-cell clone. <i>Cellular Immunology</i> , 1982 , 68, 193-8 | 4.4 | 3 | | 36 | Necrosis of infant hamster cerebellum due to a tick-borne encephalitis virus. <i>Journal of the Neurological Sciences</i> , 1971 , 14, 215-24 | 3.2 | 3 | | 35 | THE ROLE OF MAJOR HISTOCOMPATIBILITY ANTIGENS IN CELL-MEDIATED IMMUNITY TO VIRUS INFECTIONS 1976 , 735-750 | | 3 | | 34 | Virus-immune cytotoxic T cells are sentized to by virus specifically altered structures coded for in H-2K or H-2D: a biological role for major histocompatibility antigens. <i>Advances in Experimental Medicine and Biology</i> , 1976 , 66, 387-9 | 3.6 | 3 | | 33 | Thinking about broadly cross-reactive vaccines. Clinical Pharmacology and Therapeutics, 2009, 85, 665-8 | 6.1 | 2 | | 32 | Q&A: H1N1 pandemic influenzawhatN new?. <i>BMC Biology</i> , 2010 , 8, 130 | 7.3 | 2 | | 31 | Memories of virus-specific CD8+ T cells. <i>Immunology and Cell Biology</i> , 2004 , 82, 136-40 | 5 | 2 | | 30 | Persistence of the irradiated host component in thymocyte populations from bone marrow radiation chimeras infected with lymphocytic choriomeningitis virus. <i>Cellular Immunology</i> , 1989 , 118, 482-90 | 4.4 | 2 | | 29 | Binding of monoclonal antibodies and T cell effector function in vivo. <i>Hybridoma</i> , 1990 , 9, 9-15 | | 2 | | 28 | Virus-immune T cells and the major histocompatibility complex: evolution of some basic concepts over the past two years. <i>Experientia</i> , 1986 , 42, 972-7 | | 2 | | 27 | Characteristics of the inflammatory process in murine lymphocytic choriomeningitis. <i>Medical Microbiology and Immunology</i> , 1986 , 175, 193-5 | 4 | 2 | | 26 | Cell-mediated immunity in virus infections of the central nervous system. <i>Annals of the New York Academy of Sciences</i> , 1988 , 540, 228-39 | 6.5 | 2 | | 25 | Evasion of host immune responses by tumours and viruses. <i>Novartis Foundation Symposium</i> , 1994 , 187, 245-56; discussion 256-60 | | 2 | |----|--|--------|-----| | 24 | Characteristics of the CSF Inflammatory Exudate in Murine Lymphocytic Choriomeningitis 1987 , 351-36 | 0 | 2 | | 23 | Immunological Surveillance: T Cell Repertoire and the Biological Function of MHC Antigens 1983 , 91-10 | 9 | 2 | | 22 | Cell-mediated immunity 2013 , 298-310 | | 1 | | 21 | Cell-Mediated Immunity in Virus Infections (Nobel Lecture). <i>Angewandte Chemie International Edition in English</i> , 1997 , 36, 1926-1936 | | 1 | | 20 | Zellvermittelte ImmunitEbei Virusinfektionen (Nobel-Vortrag). <i>Angewandte Chemie</i> , 1997 , 109, 2014-20 | 1356 | 1 | | 19 | Memory and recall CD8+ T cell responses to the influenza A viruses. <i>International Congress Series</i> , 2001 , 1219, 293-300 | | 1 | | 18 | Influence of non-major histocompatibility complex differences on the severity of lymphocytic choriomeningitis. <i>Journal of Neuroimmunology</i> , 1989 , 24, 55-60 | 3.5 | 1 | |
17 | In-concert immune dynamics during natural influenza virus infection and recovery in acute hospitalized patients | | 1 | | 16 | Cell-Mediated Immunity to Viruses and Intracellular Bacteria. Clinics in Rheumatic Diseases, 1978 , 4, 549 | -563 | 1 | | 15 | Suboptimal SARS-CoV-2-specific CD8+ T-cell response associated with the prominent HLA-A*02:01 pher | notype | 2 1 | | 14 | VIRUS-HOST INTERACTIONS: A TELEOLOGICAL LOOK AT MHC RESTRICTION 1980 , 103-120 | | 1 | | 13 | The Dual Specificity of Virus-Immune T Cells 1981 , 35-57 | | 1 | | 12 | Virus-immune T cells and monoclonal antibodies in the mouse influenza model. <i>Advances in Experimental Medicine and Biology</i> , 1983 , 162, 441-7 | 3.6 | 1 | | 11 | Historical Developments in Understanding the Function of Class I MHC Genes 1987, 341-358 | | 1 | | 10 | The glittering prizes. <i>Nature Immunology</i> , 2010 , 11, 875-8 | 19.1 | | | 9 | Burnet, chick embryos, viruses, clones and quantitative biology. <i>Immunology and Cell Biology</i> , 2008 , 86, 119-23 | 5 | | | 8 | Challenged by complexity: my twentieth century in immunology. <i>Annual Review of Immunology</i> , 2007 , 25, 1-19 | 34.7 | | #### LIST OF PUBLICATIONS | 7 | thymocytes and the early reconstitution profiles of P leads to F1 chimeras. <i>Cellular Immunology</i> , 1981 , 65, 33-42 | 4.4 | |---|--|-----| | 6 | The immune response to influenza A viruses 2008 , 113-138 | | | 5 | Role of CD8+# Cells in Respiratory Infections Caused by Sendai Virus and Influenza Virus 1993, 351-35 | 7 | | 4 | The Immune Response to Influenza A Viruses 2011 , 173-197 | | | 3 | Involvement of Self in the Interactions of Lymphocytes and Target Cells: Some Speculations on the Nature of MHC Restriction 1982 , 85-117 | | | 2 | This Scientific Life. <i>Viral Immunology</i> , 2020 , 33, 128 | 1.7 | | 1 | COVID-19 and beyond. <i>Round Table</i> , 2021 , 110, 171-172 | 0.4 |