
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4802899/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted State6 gene. Nature, 1996, 380, 630-633.	27.8	1,223
2	Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature, 1996, 382, 171-174.	27.8	1,059
3	Influenza. Nature Reviews Disease Primers, 2018, 4, 3.	30.5	880
4	Immunological surveillance against altered self components by sensitised T lymphocytes in lymphocytes choriomeningitis. Nature, 1974, 251, 547-548.	27.8	787
5	Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature, 1975, 256, 50-52.	27.8	663
6	Virus-Specific CD8+ T Cells in Primary and Secondary Influenza Pneumonia. Immunity, 1998, 8, 683-691.	14.3	641
7	The Intracellular Sensor NLRP3 Mediates Key Innate and Healing Responses to Influenza A Virus via the Regulation of Caspase-1. Immunity, 2009, 30, 566-575.	14.3	640
8	Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature, 1994, 369, 652-654.	27.8	513
9	Altered peptidase and viral-specific T cell response in LMP2 mutant mice. Immunity, 1994, 1, 533-541.	14.3	418
10	Effector CD4+ and CD8+ T-cell mechanisms in the control of respiratory virus infections. Immunological Reviews, 1997, 159, 105-117.	6.0	407
11	Cell-mediated Protection in Influenza Infection. Emerging Infectious Diseases, 2006, 12, 48-54.	4.3	405
12	Roles of alphabeta and gammadelta T Cell Subsets in Viral Immunity. Annual Review of Immunology, 1992, 10, 123-151.	21.8	400
13	A question of selfâ€preservation: immunopathology in influenza virus infection. Immunology and Cell Biology, 2007, 85, 85-92.	2.3	399
14	TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5306-5311.	7.1	383
15	The origins of SARS-CoV-2: A critical review. Cell, 2021, 184, 4848-4856.	28.9	330
16	Influenza and the challenge for immunology. Nature Immunology, 2006, 7, 449-455.	14.5	324
17	Structural determinants of T-cell receptor bias in immunity. Nature Reviews Immunology, 2006, 6, 883-894.	22.7	322
18	Receptor interacting protein kinase 2–mediated mitophagy regulates inflammasome activation during virus infection. Nature Immunology, 2013, 14, 480-488.	14.5	320

#	Article	IF	CITATIONS
19	The Collagen Binding α1β1 Integrin VLA-1 Regulates CD8 T Cell-Mediated Immune Protection against Heterologous Influenza Infection. Immunity, 2004, 20, 167-179.	14.3	294
20	The discovery of MHC restriction. Trends in Immunology, 1997, 18, 14-17.	7.5	281
21	Measuring the diaspora for virus-specific CD8+ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6313-6318.	7.1	271
22	Compromised Influenza Virus-Specific CD8+-T-Cell Memory in CD4+-T-Cell-Deficient Mice. Journal of Virology, 2002, 76, 12388-12393.	3.4	270
23	Accessing Complexity: The Dynamics of Virus-Specific T Cell Responses. Annual Review of Immunology, 2000, 18, 561-592.	21.8	260
24	Early hypercytokinemia is associated with interferon-induced transmembrane protein-3 dysfunction and predictive of fatal H7N9 infection. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 769-774.	7.1	250
25	Human mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18–dependent activation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10133-10138.	7.1	246
26	Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8+ T cells. Nature Communications, 2015, 6, 6833.	12.8	241
27	A Previously Unrecognized H-2Db-Restricted Peptide Prominent in the Primary Influenza A Virus-Specific CD8+T-Cell Response Is Much Less Apparent following Secondary Challenge. Journal of Virology, 2000, 74, 3486-3493.	3.4	239
28	Sharing of T cell receptors in antigen-specific responses is driven by convergent recombination. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18691-18696.	7.1	222
29	T Cell Receptor αβ Diversity Inversely Correlates with Pathogen-Specific Antibody Levels in Human Cytomegalovirus Infection. Science Translational Medicine, 2012, 4, 128ra42.	12.4	217
30	Paired analysis of TCRα and TCRβ chains at the single-cell level in mice. Journal of Clinical Investigation, 2011, 121, 288-295.	8.2	213
31	Genes required for cytotoxicity against virus-infected target cells in K and D regions of H-2 complex. Nature, 1975, 254, 269-270.	27.8	211
32	Inhibition of MHC class I-restricted antigen presentation by gamma 2-herpesviruses. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8455-8460.	7.1	201
33	Forced degradation of Fas inhibits apoptosis in adenovirus-infected cells. Nature, 1998, 392, 726-730.	27.8	196
34	Age-Related Decline in Primary CD8+ T Cell Responses Is Associated with the Development of Senescence in Virtual Memory CD8+ T Cells. Cell Reports, 2018, 23, 3512-3524.	6.4	194
35	Differential Antigen Presentation Regulates the Changing Patterns of CD8+ T Cell Immunodominance in Primary and Secondary Influenza Virus Infections. Journal of Experimental Medicine, 2003, 198, 399-410.	8.5	193
36	Hierarchies in Cytokine Expression Profiles for Acute and Resolving Influenza Virus-Specific CD8+ T Cell Responses: Correlation of Cytokine Profile and TCR Avidity. Journal of Immunology, 2004, 172, 5553-5560.	0.8	185

#	Article	IF	CITATIONS
37	Diversity of Epitope and Cytokine Profiles for Primary and Secondary Influenza A Virus-Specific CD8+ T Cell Responses. Journal of Immunology, 2001, 166, 4627-4633.	0.8	184
38	Methods for comparing the diversity of samples of the T cell receptor repertoire. Journal of Immunological Methods, 2007, 321, 182-195.	1.4	181
39	Dissection of an inflammatory process induced by CD8+ T cells. Trends in Immunology, 1990, 11, 55-59.	7.5	177
40	The kinase mTOR modulates the antibody response to provide cross-protective immunity to lethal infection with influenza virus. Nature Immunology, 2013, 14, 1266-1276.	14.5	169
41	Suboptimal SARS-CoV-2â [~] 'specific CD8 ⁺ T cell response associated with the prominent HLA-A*02:01 phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24384-24391.	7.1	168
42	Immunological Surveillance of Tumors in the Context of Major Histocompatibility Complex Restriction of T Cell Function. Advances in Cancer Research, 1984, 42, 1-65.	5.0	163
43	Cross-reactive CD8 ⁺ T-cell immunity between the pandemic H1N1-2009 and H1N1-1918 influenza A viruses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12599-12604.	7.1	163
44	Pathogenesis of an Infectious Mononucleosis-like Disease Induced by a Murine γ-Herpesvirus: Role for a Viral Superantigen?. Journal of Experimental Medicine, 1997, 185, 1641-1650.	8.5	161
45	Pathogenesis of Hong Kong H5N1 influenza virus NS gene reassortants in mice: the role of cytokines and B- and T-cell responses. Journal of General Virology, 2005, 86, 1121-1130.	2.9	155
46	Establishment and Persistence of Virus-Specific CD4+ and CD8+ T Cell Memory. Immunological Reviews, 1996, 150, 23-44.	6.0	152
47	The Role of Antigen in the Localization of Naive, Acutely Activated, and Memory CD8+ T Cells to the Lung During Influenza Pneumonia. Journal of Immunology, 2001, 167, 6983-6990.	0.8	149
48	A virus-specific CD8+ T cell immunodominance hierarchy determined by antigen dose and precursor frequencies. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 994-999.	7.1	149
49	Clearance of an Influenza A Virus by CD4 + T Cells Is Inefficient in the Absence of B Cells. Journal of Virology, 1998, 72, 882-885.	3.4	149
50	Changing patterns of dominance in the CD8+ T cell response during acute and persistent murine γ-herpesvirus infection. European Journal of Immunology, 1999, 29, 1059-1067.	2.9	146
51	Addition of a Prominent Epitope Affects Influenza A Virus-Specific CD8+ T Cell Immunodominance Hierarchies When Antigen Is Limiting. Journal of Immunology, 2006, 177, 2917-2925.	0.8	146
52	Respiratory epithelial cells in innate immunity to influenza virus infection. Cell and Tissue Research, 2011, 343, 13-21.	2.9	146
53	Regulation of ZAP-70 Activation and TCR Signaling by Two Related Proteins, Sts-1 and Sts-2. Immunity, 2004, 20, 37-46.	14.3	145
54	Preexisting CD8 ⁺ T-cell immunity to the H7N9 influenza A virus varies across ethnicities. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1049-1054.	7.1	144

#	Article	IF	CITATIONS
55	Thymic lymphoproliferative disease after successful correction of CD40 ligand deficiency by gene transfer in mice. Nature Medicine, 1998, 4, 1253-1260.	30.7	143
56	Lack of prominent peptide–major histocompatibility complex features limits repertoire diversity in virus-specific CD8+ T cell populations. Nature Immunology, 2005, 6, 382-389.	14.5	142
57	Primary CTL response magnitude in mice is determined by the extent of naive T cell recruitment and subsequent clonal expansion. Journal of Clinical Investigation, 2010, 120, 1885-1894.	8.2	140
58	In vivo proliferation of naive and memory influenza-specific CD8+ T cells. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 8597-8602.	7.1	139
59	Conserved T cell receptor usage in primary and recall responses to an immunodominant influenza virus nucleoprotein epitope. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4942-4947.	7.1	135
60	The Origin of COVID-19 and Why It Matters. American Journal of Tropical Medicine and Hygiene, 2020, 103, 955-959.	1.4	134
61	Major Transplantation Antigens, Viruses, and Specificity of Surveillance T Cells. , 1977, 7, 179-220.		133
62	Diminished Primary and Secondary Influenza Virus-Specific CD8+ T-Cell Responses in CD4-Depleted Igâ^'/â^' Mice. Journal of Virology, 2000, 74, 9762-9765.	3.4	127
63	Analysis of Clonotype Distribution and Persistence for an Influenza Virus-Specific CD8+ T Cell Response. Immunity, 2003, 18, 549-559.	14.3	125
64	CD4+ T cell-mediated control of a Â-herpesvirus in B cell-deficient mice is mediated by IFN-Â. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 5135-5140.	7.1	123
65	Combined NKT cell activation and influenza virus vaccination boosts memory CTL generation and protective immunity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3330-3335.	7.1	123
66	Molecular basis for universal HLA-A*0201–restricted CD8 ⁺ T-cell immunity against influenza viruses. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4440-4445.	7.1	122
67	Dissecting the host response to a γ–herpesvirus. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 581-593.	4.0	120
68	Protection and compensation in the influenza virus-specific CD8+ T cell response. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7235-7240.	7.1	115
69	Profound Protection against Respiratory Challenge with a Lethal H7N7 Influenza A Virus by Increasing the Magnitude of CD8+ T-Cell Memory. Journal of Virology, 2000, 74, 11690-11696.	3.4	111
70	Sizing up the key determinants of the CD8+ T cell response. Nature Reviews Immunology, 2015, 15, 705-716.	22.7	111
71	Analysis of the Virus-Specific and Nonspecific B Cell Response to a Persistent B-Lymphotropic Gammaherpesvirus. Journal of Immunology, 2000, 164, 1820-1828.	0.8	109
72	Clonally diverse CD38+HLA-DR+CD8+ T cells persist during fatal H7N9 disease. Nature Communications, 2018, 9, 824.	12.8	107

#	Article	IF	CITATIONS
73	Characteristics of virus-specific CD8 ⁺ T cells in the liver during the control and resolution phases of influenza pneumonia. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 13812-13817.	7.1	105
74	A Â-herpesvirus sneaks through a CD8+ T cell response primed to a lytic-phase epitope. Proceedings of the United States of America, 1999, 96, 9281-9286.	7.1	105
75	An Early CD4+ T Cell–dependent Immunoglobulin A Response to Influenza Infection in the Absence of Key Cognate T–B Interactions. Journal of Experimental Medicine, 2003, 198, 1011-1021.	8.5	104
76	Contemporary Analysis of MHC-Related Immunodominance Hierarchies in the CD8+ T Cell Response to Influenza A Viruses. Journal of Immunology, 2000, 165, 2404-2409.	0.8	103
77	Kinetic Analysis of the Specific Host Response to a Murine Gammaherpesvirus. Journal of Virology, 1998, 72, 943-949.	3.4	101
78	Models for recognition of virally modified cells by immune thymus-derived lymphocytes. Immunogenetics, 1976, 3, 517-524.	2.4	100
79	Virus-specific CD8+ T cell numbers are maintained during Â-herpesvirus reactivation in CD4-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 15565-15570.	7.1	98
80	CD8+ T-cell memory to viruses. Current Opinion in Immunology, 1994, 6, 545-552.	5.5	97
81	Localization of CD4+ T cell epitope hotspots to exposed strands of HIV envelope glycoprotein suggests structural influences on antigen processing. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 4587-4592.	7.1	95
82	Highly Pathological Influenza A Virus Infection Is Associated with Augmented Expression of PD-1 by Functionally Compromised Virus-Specific CD8 ⁺ T Cells. Journal of Virology, 2014, 88, 1636-1651.	3.4	90
83	Non-Antigen-Specific B-Cell Activation following Murine Gammaherpesvirus Infection Is CD4 Independent In Vitro but CD4 Dependent In Vivo. Journal of Virology, 1999, 73, 1075-1079.	3.4	88
84	Mucosal HIV-1 Pox Virus Prime-Boost Immunization Induces High-Avidity CD8+ T Cells with Regime-Dependent Cytokine/Granzyme B Profiles. Journal of Immunology, 2007, 178, 2370-2379.	0.8	87
85	Differentiation-dependent functional and epigenetic landscapes for cytokine genes in virus-specific CD8 ⁺ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15306-15311.	7.1	85
86	Toward a broadly protective influenza vaccine. Journal of Clinical Investigation, 2008, 118, 3273-5.	8.2	84
87	IMMUNOLOGY: Update: The Numbers Game for Virus-Specific CD8+ T Cells. Science, 1998, 280, 227-227.	12.6	83
88	Limiting dilution analysis of the specificity of influenza-immune cytotoxic T cells. Cellular Immunology, 1982, 67, 49-59.	3.0	79
89	Early establishment of diverse T cell receptor profiles for influenza-specific CD8+CD62Lhi memory T cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9184-9189.	7.1	79
90	Heterogeneity of Effector Phenotype for Acute Phase and Memory Influenza A Virus-Specific CTL. Journal of Immunology, 2007, 179, 64-70.	0.8	79

#	Article	IF	CITATIONS
91	Phenotypic analysis of the inflammatory exudate in murine lymphocytic choriomeningitis Journal of Experimental Medicine, 1987, 165, 1539-1551.	8.5	74
92	Systematic identification of immunodominant CD8 ⁺ T-cell responses to influenza A virus in HLA-A2 individuals. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9178-9183.	7.1	74
93	Tuning into immunological dissonance: an experimental model for infectious mononucleosis. Current Opinion in Immunology, 1997, 9, 477-483.	5.5	71
94	Quantification of Repertoire Diversity of Influenza-Specific Epitopes with Predominant Public or Private TCR Usage. Journal of Immunology, 2006, 177, 6705-6712.	0.8	70
95	Recalling the Future: Immunological Memory Toward Unpredictable Influenza Viruses. Frontiers in Immunology, 2019, 10, 1400.	4.8	68
96	Method for assessing the similarity between subsets of the T cell receptor repertoire. Journal of Immunological Methods, 2008, 329, 67-80.	1.4	67
97	Effects of fourH-2K mutations on virus-induced antigens recognized by cytotoxic T cells. Immunogenetics, 1976, 3, 541-548.	2.4	66
98	Ecological analysis of antigen-specific CTL repertoires defines the relationship between naÃ ⁻ ve and immune T-cell populations. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1839-1844.	7.1	66
99	Defects in T-cell–mediated immunity to influenza virus in murine Wiskott-Aldrich syndrome are corrected by oncoretroviral vector–mediated gene transfer into repopulating hematopoietic cells. Blood, 2003, 102, 3108-3116.	1.4	64
100	Lymphocytic choriomeningitis virus induces a chronic wasting disease in mice lacking class I major histocompatibility complex glycoproteins. Journal of Neuroimmunology, 1993, 46, 11-17.	2.3	63
101	Requirement for CD40 Ligand, CD4 ⁺ T Cells, and B Cells in an Infectious Mononucleosis-Like Syndrome. Journal of Virology, 1999, 73, 9650-9654.	3.4	63
102	Virus-specific memory T cells are Pgp-1+ and can be selectively activated with phorbol ester and calcium lonophore. Cellular Immunology, 1988, 113, 268-277.	3.0	62
103	Protective Efficacy of Cross-Reactive CD8+ T Cells Recognising Mutant Viral Epitopes Depends on Peptide-MHC-I Structural Interactions and T Cell Activation Threshold. PLoS Pathogens, 2010, 6, e1001039.	4.7	62
104	Reconstruction of the 1918 Influenza Virus: Unexpected Rewards from the Past. MBio, 2012, 3, .	4.1	61
105	Early Priming Minimizes the Age-Related Immune Compromise of CD8+ T Cell Diversity and Function. PLoS Pathogens, 2012, 8, e1002544.	4.7	60
106	Experimental louping-ill in sheep and lambs. Journal of Comparative Pathology, 1971, 81, 291-298.	0.4	59
107	Compromised respiratory function in lethal influenza infection is characterized by the depletion of type I alveolar epithelial cells beyond threshold levels. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 304, L481-L488.	2.9	59
108	Contribution of T cell receptor affinity to overall avidity for virus-specific CD8+ T cell responses. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11432-11437.	7.1	58

#	Article	IF	CITATIONS
109	Constraints within major histocompatibility complex class I restricted peptides: Presentation and consequences for T-cell recognition. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5534-5539.	7.1	58
110	Immunity to seasonal and pandemic influenza A viruses. Microbes and Infection, 2011, 13, 489-501.	1.9	58
111	Pause on Avian Flu Transmission Research. Science, 2012, 335, 400-401.	12.6	58
112	Functional implications of T cell receptor diversity. Current Opinion in Immunology, 2009, 21, 286-290.	5.5	57
113	Immunoproteasome Subunit Deficiencies Impact Differentially on Two Immunodominant Influenza Virus-Specific CD8+ T Cell Responses. Journal of Immunology, 2006, 177, 7680-7688.	0.8	56
114	Consequences of Immunodominant Epitope Deletion for Minor Influenza Virus-Specific CD8+-T-Cell Responses. Journal of Virology, 2005, 79, 4329-4339.	3.4	55
115	Acute emergence and reversion of influenza A virus quasispecies within CD8+ T cell antigenic peptides. Nature Communications, 2013, 4, 2663.	12.8	55
116	Clearance of Sendai virus by CD8+ T cells requires direct targeting to virus-infected epithelium. European Journal of Immunology, 1995, 25, 111-116.	2.9	54
117	Establishment and recall of CD8 + Tâ€cell memory in a model of localized transient infection. Immunological Reviews, 2006, 211, 133-145.	6.0	54
118	An unexpected antibody response to an engineered influenza virus modifies CD8+ T cell responses. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2764-2769.	7.1	54
119	Cell Cycle-Related Acquisition of Cytotoxic Mediators Defines the Progressive Differentiation to Effector Status for Virus-Specific CD8+ T Cells. Journal of Immunology, 2008, 181, 3818-3822.	0.8	54
120	Quantitative Analysis of the Acute and Long-Term CD4 ⁺ T-Cell Response to a Persistent Gammaherpesvirus. Journal of Virology, 1999, 73, 4279-4283.	3.4	54
121	Concurrent Naive and Memory CD8+ T Cell Responses to an Influenza A Virus. Journal of Immunology, 2001, 167, 2753-2758.	0.8	53
122	IL-18, but not IL-12, is required for optimal cytokine production by influenza virus-specific CD8+ T cells. European Journal of Immunology, 2007, 37, 368-375.	2.9	53
123	Hidden Epitopes Emerge in Secondary Influenza Virus-Specific CD8+ T Cell Reponses. Journal of Immunology, 2007, 178, 3091-3098.	0.8	50
124	Epitope-specific TCRÎ ² repertoire diversity imparts no functional advantage on the CD8 ⁺ T cell response to cognate viral peptides. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2034-2039.	7.1	50
125	Characteristics of secondary cytotoxic T-cell responses in mice infected with influenza A viruses. Cellular Immunology, 1978, 36, 345-353.	3.0	49
126	Isolation of virus from brain after immunosuppression of mice with latent herpes simplex. Nature, 1981, 291, 432-433.	27.8	49

#	Article	IF	CITATIONS
127	Acute experimental allergic encephalomyelitis in radiation bone marrow chimeras between high and low susceptible strains of mice. Immunogenetics, 1986, 24, 309-315.	2.4	49
128	Affinity Thresholds for Naive CD8+ CTL Activation by Peptides and Engineered Influenza A Viruses. Journal of Immunology, 2011, 187, 5733-5744.	0.8	49
129	Protection against a Lethal Avian Influenza A Virus in a Mammalian System. Journal of Virology, 1999, 73, 1453-1459.	3.4	49
130	Different rules govern help for cytotoxic T cells and B cells. Nature, 1978, 276, 829-831.	27.8	48
131	Virus-Specific and Bystander CD8 + T-Cell Proliferation in the Acute and Persistent Phases of a Gammaherpesvirus Infection. Journal of Virology, 2001, 75, 4435-4438.	3.4	48
132	Location rather than CD62L phenotype is critical in the early establishment of influenza-specific CD8+ T cell memory. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9782-9787.	7.1	48
133	Disregulated Influenza A Virus-Specific CD8+ T Cell Homeostasis in the Absence of IFN-Î ³ Signaling. Journal of Immunology, 2007, 178, 7616-7622.	0.8	48
134	Postexposure vaccination massively increases the prevalence of gamma -herpesvirus-specific CD8+ T cells but confers minimal survival advantage on CD4-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 2725-2730.	7.1	47
135	Consequences of a single Ir-gene defect for the pathogenesis of lymphocytic choriomeningitis. Immunogenetics, 1985, 21, 581-589.	2.4	45
136	Immune T cells can protect or induce fatal neurological disease in murine lymphocytic choriomeningitis. Cellular Immunology, 1985, 90, 401-407.	3.0	45
137	Virus infections in mice with targeted gene disruptions. Current Opinion in Immunology, 1993, 5, 479-483.	5.5	45
138	Heightened self-reactivity associated with selective survival, but not expansion, of naÃ ⁻ ve virus-specific CD8 ⁺ T cells in aged mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1333-1338.	7.1	45
139	Tracking phenotypically and functionally distinct T cell subsets via T cell repertoire diversity. Molecular Immunology, 2008, 45, 607-618.	2.2	44
140	The acute inflammatory process in murine lymphocytic choriomeningitis is dependent on Lyt-2+ immune T cells. Cellular Immunology, 1987, 107, 8-14.	3.0	43
141	Structural basis for enabling T-cell receptor diversity within biased virus-specific CD8 ⁺ T-cell responses. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9536-9541.	7.1	43
142	Perforin and Fas in murine gammaherpesvirus-specific CD8+ T cell control and morbidity. Journal of General Virology, 2001, 82, 1971-1981.	2.9	43
143	Clustering of Th Cell Epitopes on Exposed Regions of HIV Envelope Despite Defects in Antibody Activity. Journal of Immunology, 2003, 171, 4140-4148.	0.8	42
144	CD4 ⁺ T help promotes influenza virus-specific CD8 ⁺ T cell memory by limiting metabolic dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4481-4488.	7.1	42

#	Article	IF	CITATIONS
145	Virus-specific immunity after gene therapy in a murine model of severe combined immunodeficiency. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 232-237.	7.1	41
146	Analysis of Virus-Specific CD4 + T Cells during Long-Term Gammaherpesvirus Infection. Journal of Virology, 2001, 75, 7744-7748.	3.4	41
147	The Context of Epitope Presentation Can Influence Functional Quality of Recalled Influenza A Virus-Specific Memory CD8+ T Cells. Journal of Immunology, 2007, 179, 2187-2194.	0.8	41
148	Characterization of CD8+ T cell repertoire diversity and persistence in the influenza A virus model of localized, transient infection. Seminars in Immunology, 2004, 16, 179-184.	5.6	40
149	Interplay between Chromatin Remodeling and Epigenetic Changes during Lineage-Specific Commitment to Granzyme B Expression. Journal of Immunology, 2009, 183, 7063-7072.	0.8	40
150	Human γδT ell receptor repertoire is shaped by influenza viruses, age and tissue compartmentalisation. Clinical and Translational Immunology, 2019, 8, e1079.	3.8	40
151	Differential tumor necrosis factor receptor 2-mediated editing of virus-specific CD8+ effector T cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3545-3550.	7.1	39
152	Reproducible selection of high avidity CD8 ⁺ T-cell clones following secondary acute virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1485-1490.	7.1	38
153	H–2 gene expression is required for T cell-mediated lysis of virus-infected target cells. Nature, 1977, 266, 361-362.	27.8	37
154	Breakdown of the blood-cerebrospinal fluid barrier to immunoglobulin in mice injected intracerebrally with a neurotropic influenza A virus. Journal of Neuroimmunology, 1981, 1, 227-237.	2.3	37
155	Expression of Pgp-1 (or Ly24) by subpopulations of mouse thymocytes and activated peripheral T lymphocytes. European Journal of Immunology, 1987, 17, 137-140.	2.9	37
156	Extent of γδT cell involvement in the pneumonia caused by sendai virus. Cellular Immunology, 1992, 143, 183-193.	3.0	37
157	hsp65 mRNA+ macrophages and γδT cells in influenza virus-infected mice depleted of the CD4+ and CD8+ lymphocyte subsets. Microbial Pathogenesis, 1993, 14, 75-84.	2.9	37
158	Immune exhaustion: driving virus-specific CD8+ T cells to death. Trends in Microbiology, 1993, 1, 207-208.	7.7	37
159	Epigenetic plasticity of Cd8a locus during CD8+ T-cell development and effector differentiation and reprogramming. Nature Communications, 2014, 5, 3547.	12.8	37
160	Characterization of innate responses to influenza virus infection in a novel lung type I epithelial cell model. Journal of General Virology, 2014, 95, 350-362.	2.9	37
161	Louping-ill encephalomyelitis in the sheep. Journal of Comparative Pathology, 1971, 81, 531-IN5.	0.4	36
162	Prevalence and Activation Phenotype of Sendai Virus-Specific CD4+ T Cells. Virology, 1995, 210, 179-185.	2.4	36

#	Article	IF	CITATIONS
163	WASPâ^ mice exhibit defective immune responses to influenza A virus, Streptococcus pneumoniae, and Mycobacterium bovis BCG. Experimental Hematology, 2005, 33, 443-451.	0.4	36
164	Reduced Functional Capacity of CD8+ T Cells Expanded by Post-Exposure Vaccination of Î ³ -Herpesvirus-Infected CD4-Deficient Mice. Journal of Immunology, 2002, 168, 3477-3483.	0.8	35
165	A correlation between function and selected measures of T cell avidity in influenza virus-specific CD8+ T cell responses. European Journal of Immunology, 2006, 36, 2951-2959.	2.9	35
166	Cutting Edge: Tissue-Resident Memory CTL Down-Regulate Cytolytic Molecule Expression following Virus Clearance. Journal of Immunology, 2007, 179, 7220-7224.	0.8	35
167	Killer T cells in influenza. , 2008, 120, 186-196.		35
168	Complete modification of TCR specificity and repertoire selection does not perturb a CD8 ⁺ T cell immunodominance hierarchy. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19408-19413.	7.1	35
169	Use it or lose it: establishment and persistence of T cell memory. Frontiers in Immunology, 2012, 3, 357.	4.8	35
170	Lymphocyte–Macrophage Interactions and Macrophage Activation in the Expression of Antimicrobial Immunity in Vivo. , 1976, , 367-400.		35
171	Louping-ill encephalomyelitis in the sheep. Journal of Comparative Pathology, 1971, 81, 537-543.	0.4	34
172	H-2 compatibility requirement for virus-specific T-cell-mediated cytolysis. Evaluation of the role of H-2I region and non-H-2 genes in regulating immune response Journal of Experimental Medicine, 1976, 144, 519-532.	8.5	34
173	Granzyme K Expressing Cytotoxic T Lymphocytes Protects Against Influenza Virus in Granzyme AB ^{â^²/â~²} Mice. Viral Immunology, 2008, 21, 341-346.	1.3	34
174	Transmission Studies Resume for Avian Flu. Science, 2013, 339, 520-521.	12.6	34
175	Inactivated Influenza Vaccine That Provides Rapid, Innate-Immune-System-Mediated Protection and Subsequent Long-Term Adaptive Immunity. MBio, 2015, 6, e01024-15.	4.1	34
176	Immune cellular networks underlying recovery from influenza virus infection in acute hospitalized patients. Nature Communications, 2021, 12, 2691.	12.8	34
177	Louping-ill encephalomyelitis in the sheep. Journal of Comparative Pathology, 1971, 81, 521-529.	0.4	33
178	Louping-ill encephalomyelitis in the sheep. Journal of Comparative Pathology, 1971, 81, 545-549.	0.4	33
179	Central nervous system infection and immune response in mice inoculated into the lip with herpes simplex virus type 1. Journal of Neuroimmunology, 1982, 2, 295-305.	2.3	33
180	Decreased ILâ€10 and ILâ€13 production and increased CD44 ^{hi} T cell recruitment contribute to <i>Leishmania major</i> immunity induced by nonâ€persistent parasites. European Journal of Immunology, 2008, 38, 3090-3100.	2.9	33

#	Article	IF	CITATIONS
181	Screening monoclonal antibodies for cross-reactivity in the ferret model of influenza infection. Journal of Immunological Methods, 2008, 336, 71-77.	1.4	33
182	Granzyme A expression reveals distinct cytolytic CTL subsets following influenza A virus infection. European Journal of Immunology, 2009, 39, 1203-1210.	2.9	33
183	An In Vivo Cytotoxicity Threshold for Influenza A Virus-Specific Effector and Memory CD8+ T Cells. Journal of Immunology, 2007, 178, 1285-1292.	0.8	32
184	Evaluation of Recombinant Influenza Virus-Simian Immunodeficiency Virus Vaccines in Macaques. Journal of Virology, 2009, 83, 7619-7628.	3.4	31
185	Experimental louping-ill in sheep and lambs. Journal of Comparative Pathology, 1971, 81, 331-337.	0.4	30
186	Pathogenesis of Murine Gammaherpesvirus-68 Infection in Interleukin-6-Deficient Mice. Virology, 1998, 249, 359-366.	2.4	30
187	Physiological Numbers of CD4+ T Cells Generate Weak Recall Responses Following Influenza Virus Challenge. Journal of Immunology, 2010, 184, 1721-1727.	0.8	30
188	Virus-Specific CD8+ T Cells in the Liver: Armed and Ready to Kill. Journal of Immunology, 2007, 178, 2737-2745.	0.8	29
189	Contributions of host and donor T cells to the inflammatory process in murine lymphocytic choriomeningitis. Cellular Immunology, 1988, 116, 475-481.	3.0	28
190	The Influenza Virus–Specific CTL Immunodominance Hierarchy in Mice Is Determined by the Relative Frequency of High-Avidity T Cells. Journal of Immunology, 2014, 192, 4061-4068.	0.8	28
191	Quantitative Analysis of Long-Term Virus-Specific CD8 + -T-Cell Memory in Mice Challenged with Unrelated Pathogens. Journal of Virology, 2003, 77, 7756-7763.	3.4	27
192	Differential Host Response, Rather Than Early Viral Replication Efficiency, Correlates with Pathogenicity Caused by Influenza Viruses. PLoS ONE, 2013, 8, e74863.	2.5	27
193	Peritoneal macrophages as target cells for measuring virus-specific T cell mediated cytotoxicity in vitro. Journal of Immunological Methods, 1975, 8, 263-266.	1.4	26
194	Effector CD8+ T cells recovered from an influenza pneumonia differentiate to a state of focused gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6074-6079.	7.1	26
195	Heat-shock proteins and the ?? T cell response in virus infections: Implications for autoimmunity. Seminars in Immunopathology, 1991, 13, 11-24.	4.0	25
196	Consequences of viral infections for lymphocyte compartmentalization and homeostasis. Seminars in Immunology, 1997, 9, 365-373.	5.6	25
197	The Nobel Lectures in Immunology The Nobel Prize for Physiology or Medicine, 1996 awarded to. Scandinavian Journal of Immunology, 1997, 46, 421-422.	2.7	25
198	Specific and nonspecific T-cell recruitment in viral meningitis: Possible implications for autoimmunity. Cellular Immunology, 1983, 76, 397-401.	3.0	24

#	Article	IF	CITATIONS
199	Cross-reactivity patterns of vaccinia-specific cytotoxic T lymphocytes from H-2K b mutants. Immunogenetics, 1983, 17, 79-87.	2.4	24
200	Inhibition of allergic encephalomyelitis by the iron chelating agent desferrioxamine: differential effect depending on type of sensitizing encephalitogen. Journal of Neuroimmunology, 1988, 17, 127-135.	2.3	24
201	The new numerology of immunity mediated by virus-specific CD8+ T cells. Current Opinion in Microbiology, 1998, 1, 419-422.	5.1	24
202	Absence of a functional defect in CD8+ T cells during primary murine gammaherpesvirus-68 infection of I-Abâ^'/â^' mice. Journal of General Virology, 2003, 84, 337-341.	2.9	24
203	Immunogenetic analysis of cellular interactions governing the recruitment of T lymphocytes and monocytes in lymphocytic choriomeningitis virus-induced immunopathology. Clinical Immunology and Immunopathology, 1988, 47, 19-26.	2.0	23
204	Terminal Deoxynucleotidyltransferase Is Required for the Establishment of Private Virus-Specific CD8+ TCR Repertoires and Facilitates Optimal CTL Responses. Journal of Immunology, 2008, 181, 2556-2562.	0.8	23
205	Role of the major histocompatibility complex in targeting effector T cells into a site of virus infection. European Journal of Immunology, 1986, 16, 1237-1242.	2.9	22
206	Divisionâ€linked differentiation can account for CD8 ⁺ T ell phenotype <i>in vivo</i> . European Journal of Immunology, 2009, 39, 67-77.	2.9	21
207	Reconstitution of Early Lymphoid Proliferation and Immune Function in Jak3-Deficient Mice by Interleukin-3. Blood, 1999, 94, 1906-1914.	1.4	21
208	T Cell Epitope "Hotspots" on the HIV Type 1 gp120 Envelope Protein Overlap with Tryptic Fragments Displayed by Mass Spectrometry. AIDS Research and Human Retroviruses, 2005, 21, 165-170.	1.1	20
209	Memory precursor phenotype of CD8 ⁺ T cells reflects early antigenic experience rather than memory numbers in a model of localized acute influenza infection. European Journal of Immunology, 2011, 41, 682-693.	2.9	20
210	Diverse Heterologous Primary Infections Radically Alter Immunodominance Hierarchies and Clinical Outcomes Following H7N9 Influenza Challenge in Mice. PLoS Pathogens, 2015, 11, e1004642.	4.7	20
211	Induction of Protective CD4+ T Cell-Mediated Immunity by a Leishmania Peptide Delivered in Recombinant Influenza Viruses. PLoS ONE, 2012, 7, e33161.	2.5	20
212	Cell-mediated immunity and the CNS a key role for \hat{I}^3 interferon. Trends in Neurosciences, 1985, 8, 41-42.	8.6	19
213	Vaccines and cytokine-mediated pathology in RSV infection. Trends in Microbiology, 1994, 2, 148-149.	7.7	19
214	Visualizing CTL activity for different CD8+ effector T cells supports the idea that lower TCR/epitope avidity may be advantageous for target cell killing. Cell Death and Differentiation, 2009, 16, 537-542.	11.2	19
215	Effect of MHC Class I Diversification on Influenza Epitope-Specific CD8+T Cell Precursor Frequency and Subsequent Effector Function. Journal of Immunology, 2011, 186, 6319-6328.	0.8	19
216	Î ³ δT Cells from Influenza-Infected Mice Develop a Natural Killer Cell Phenotype Following Culture. Cellular Immunology, 1994, 159, 94-102.	3.0	18

#	Article	IF	CITATIONS
217	On the nose: shared themes for the sensory and immune self. Nature Immunology, 2003, 4, 1043-1045.	14.5	18
218	Fixing an irrelevant TCRα chain reveals the importance of TCRβ diversity for optimal TCRαβ pairing and function of virusâ€specific CD8 ⁺ T cells. European Journal of Immunology, 2010, 40, 2470-2481.	2.9	18
219	Preemptive priming readily overcomes structure-based mechanisms of virus escape. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5570-5575.	7.1	18
220	Limited Breadth of a T-Helper Cell Response to a Human Immunodeficiency Virus Envelope Protein. Journal of Virology, 2003, 77, 4231-4236.	3.4	16
221	Anti-asialo GM1, eliminates both inflammatory process and cytotoxic T-cell function in the lymphocytic choriomeningitis adoptive transfer model. Cellular Immunology, 1987, 107, 1-7.	3.0	15
222	Limiting the available T cell receptor repertoire modifies acute lymphocytic choriomeningitis virus-induced immunopathology. Journal of Neuroimmunology, 1994, 51, 147-152.	2.3	15
223	Transience of MHC Class I-restricted antigen presentation after influenza A virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6724-6729.	7.1	15
224	Louping-ill encephalomyelitis in the sheep. Journal of Comparative Pathology, 1972, 82, 337-IN14.	0.4	14
225	Protective Memory Responses Are Modulated by Priming Events prior to Challenge. Journal of Virology, 2010, 84, 1047-1056.	3.4	14
226	HIV Vaccine Rationale, Design and Testing. Current HIV Research, 2005, 3, 107-112.	0.5	13
227	Homogenization of TCR Repertoires within Secondary CD62Lhigh and CD62Llow Virus-Specific CD8+ T Cell Populations. Journal of Immunology, 2008, 180, 7938-7947.	0.8	13
228	Influenza Epitope-Specific CD8+ T Cell Avidity, but Not Cytokine Polyfunctionality, Can Be Determined by TCRβ Clonotype. Journal of Immunology, 2010, 185, 6850-6856.	0.8	13
229	The Tetramer Transformation. Journal of Immunology, 2011, 187, 5-6.	0.8	13
230	The response to H-2-different virus-infected cells is mediated by long-lived T lymphocytes and is diminished by prior virus priming in a syngeneic environment. Cellular Immunology, 1981, 61, 220-224.	3.0	12
231	Analyzing the distribution of cells expressing mRNA for T cell receptor Î ³ and Î′ chains in a virus-induced inflammatory process. Cellular Immunology, 1992, 143, 55-65.	3.0	12
232	Potential killers exposed: tracking endogenous influenzaâ€specific CD8 ⁺ T cells. Immunology and Cell Biology, 2018, 96, 1104-1119.	2.3	12
233	What have we learnt so far from COVID-19?. Nature Reviews Immunology, 2021, 21, 67-68.	22.7	12
234	Turnover of T Cells in Murine Gammaherpesvirus 68-Infected Mice. Journal of Virology, 1999, 73, 7866-7869.	3.4	12

#	Article	IF	CITATIONS
235	Frequency of influenza-responsive cytolytic T-lymphocyte precursors in the thymus and spleen of unprimed mice. Cellular Immunology, 1984, 84, 403-408.	3.0	11
236	Cell Mediated Immunity in Virus Infections. Scandinavian Journal of Immunology, 1997, 46, 528-540.	2.7	11
237	The limits of protection by "memory―T cells in Ig–/–mice persistently infected with a γ-herpesvirus. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2017-2022.	7.1	11
238	Narrowed TCR diversity for immunised mice challenged with recombinant influenza A-HIV Env311–320 virus. Vaccine, 2009, 27, 6755-6761.	3.8	11
239	Reconstitution of Early Lymphoid Proliferation and Immune Function in Jak3-Deficient Mice by Interleukin-3. Blood, 1999, 94, 1906-1914.	1.4	11
240	Inflammation in virus infections. Seminars in Virology, 1993, 4, 117-122.	3.9	10
241	Cell Mediated Immunity in Virus Infections. Bioscience Reports, 1997, 17, 367-387.	2.4	10
242	Crystal-ball gazing�?�the future of immunological research viewed from the cutting edge. Clinical and Experimental Immunology, 2006, 147, 061120065600010-???.	2.6	10
243	Negative selection experiments support the idea that T-T help is required for the H-Y-specific cytotoxic T cell response. Cellular Immunology, 1981, 60, 347-353.	3.0	9
244	Differential effect of hybrid resistance on the localization of virus-immune effector T cells to spleen and brain. Immunogenetics, 1986, 24, 409-415.	2.4	9
245	Immunity to infection. Current Opinion in Immunology, 1997, 9, 453-455.	5.5	9
246	CD8+ T-cells: Are They Sufficient to Prevent, Contain or Eradicate HIV-1 Infection?. Current Drug Targets Infectious Disorders, 2005, 5, 113-119.	2.1	9
247	A Recombinant Sendai Virus Is Controlled by CD4 ⁺ Effector T Cells Responding to a Secreted Human Immunodeficiency Virus Type 1 Envelope Glycoprotein. Journal of Virology, 2007, 81, 12535-12542.	3.4	9
248	Q&A: What have we found out about the influenza A (H1N1) 2009 pandemic virus?. Journal of Biology, 2009, 8, 69.	2.7	9
249	Helping Themselves: Optimal Virus-Specific CD4 T Cell Responses Require Help via CD4 T Cell Licensing of Dendritic Cells. Journal of Immunology, 2014, 193, 5420-5433.	0.8	9
250	Competition within the virusâ€specific CD4 Tâ€cell pool limits the T follicular helper response after influenza infection. Immunology and Cell Biology, 2016, 94, 729-740.	2.3	9
251	Louping-ill encephalomyelitis in the sheep. Journal of Comparative Pathology, 1973, 83, 481-491.	0.4	8
252	Immunohistochemical Analysis of the Involvement of F4/80 and Ia-Positive Macrophages in Mouse Liver Infected With Lymphocytic Choriomeningitis Virus. Journal of Leukocyte Biology, 1986, 40, 617-628.	3.3	8

#	Article	IF	CITATIONS
253	Some problem areas in the interaction between viruses and the immune system. Immunology and Cell Biology, 1987, 65, 279-286.	2.3	8
254	Size and frequency characteristics of αβ and γÎ′ T cells in the spleens of normal and cyclophosphamide-suppressed virus-infected chickens. Cellular Immunology, 1991, 136, 242-250.	3.0	8
255	The Keys to Cell-Mediated Immunity. JAMA - Journal of the American Medical Association, 1995, 274, 1067.	7.4	8
256	Cutting Edge: Culture with High Doses of Viral Peptide Induces Previously Unprimed CD8+ T Cells to Produce Cytokine. Journal of Immunology, 2001, 167, 2437-2440.	0.8	8
257	Sindbis virus vectors elicit hemagglutinin-specific humoral and cellular immune responses and offer a dose-sparing strategy for vaccination. Vaccine, 2008, 26, 5641-5648.	3.8	8
258	Multiplexed combinatorial tetramer staining in a mouse model of virus infection. Journal of Immunological Methods, 2010, 360, 157-161.	1.4	8
259	New Approaches in Immunotherapy. Science, 2010, 327, 249-249.	12.6	8
260	Consequences of suboptimal priming are apparent for lowâ€avidity Tâ€cell responses. Immunology and Cell Biology, 2012, 90, 216-223.	2.3	8
261	Extrinsically derived TNF is primarily responsible for limiting antiviral CD8+ T cell response magnitude. PLoS ONE, 2017, 12, e0184732.	2.5	8
262	Rejection of allogeneic tumor cells growing in mouse cerebrospinal fluid Functional analysis of the inflammatory process. Journal of Neuroimmunology, 1981, 1, 93-99.	2.3	7
263	Influenza A virus-specific CD8 ⁺ T-cell responses: from induction to function. Future Virology, 2010, 5, 175-183.	1.8	7
264	"PHYSIOLOGICAL INTERACTION―DOES NOT EXPLAIN THE Hâ€2 REQUIREMENT FOR RECOGNITION OF VIRUSâ€INFECTED CELLS BY CYTOTOXIC T CELLS. The Australian Journal of Experimental Biology and Medical Science, 1976, 54, 413-422.	0.7	6
265	Thymocytes can be stimulated to give a strong vaccinia virus-immune cytotoxic T lymphocyte response. Journal of Immunological Methods, 1981, 43, 79-85.	1.4	6
266	The terminology problem for T cells: a discussion paper. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 361-362.	4.0	6
267	The Challenge of Viral Immunity. Immunity, 2007, 27, 363-365.	14.3	6
268	Endings and beginnings. Cellular and Molecular Life Sciences, 2007, 64, 1-2.	5.4	6
269	The role of epigenetics in the acquisition and maintenance of effector function in virusâ€specific CD8 T cells. IUBMB Life, 2010, 62, 519-526.	3.4	6
270	Dangerous for ferrets: lethal for humans?. BMC Biology, 2012, 10, 10.	3.8	6

#	Article	IF	CITATIONS
271	CD154 + CD4 + T ell dependence for effective memory influenza virusâ€specific CD8 + T ell responses. Immunology and Cell Biology, 2014, 92, 605-611.	2.3	6
272	A Five-Residue HIV Envelope Helper T Cell Determinant: Does This Peptide–MHC Interaction Leave the Binding Groove Half Empty?. AIDS Research and Human Retroviruses, 2002, 18, 1141-1144.	1.1	5
273	The pas de deux of viruses and CD8 T cells. Immunological Reviews, 2002, 185, 39-49.	6.0	5
274	Open letter to the Hon Tony Abbott MP. Medical Journal of Australia, 2014, 201, 252-252.	1.7	5
275	Fixed Expression of Single Influenza Virus–Specific TCR Chains Demonstrates the Capacity for TCR α– and β–Chain Diversity in the Face of Peptide–MHC Class I Specificity. Journal of Immunology, 2015, 194, 898-910.	0.8	5
276	Tropical diseases: Progress on Theileria vaccine. Nature, 1985, 316, 484-485.	27.8	4
277	Virus-immune T cells and the major histocompatibility complex: Evolution of some basic concepts over the past two years. Experientia, 1986, 42, 972-977.	1.2	4
278	Zellvermittelte Immunitäbei Virusinfektionen (Nobelâ€Vortrag). Angewandte Chemie, 1997, 109, 2014-2025.	2.0	4
279	Burnet Oration: Living in the Burnet lineage. Immunology and Cell Biology, 1999, 77, 167-176.	2.3	4
280	Q&A: What do we know about influenza and what can we do about it?. Journal of Biology, 2009, 8, 46.	2.7	4
281	Thinking About Broadly Cross-Reactive Vaccines. Clinical Pharmacology and Therapeutics, 2009, 85, 665-668.	4.7	4
282	Rules to 'prime' by. Nature Immunology, 2009, 10, 14-16.	14.5	4
283	Robust and prototypical immune responses toward influenza vaccines in the high-risk group of Indigenous Australians. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	4
284	Necrosis of infant hamster cerebellum due to a tick-borne encephalitis virus. Journal of the Neurological Sciences, 1971, 14, 215-224.	0.6	3
285	A monoclonal antibody to an interspecies major histocompatibility determinant inhibits a virus-specific T-cell clone. Cellular Immunology, 1982, 68, 193-198.	3.0	3
286	Cell-Mediated Immunity in Virus Infections(Nobel Lecture). Angewandte Chemie International Edition in English, 1997, 36, 1926-1936.	4.4	3
287	Memory and recall CD8+ T cell responses to the influenza A viruses. International Congress Series, 2001, 1219, 293-300.	0.2	3
288	Memories of virusâ€specific CD8 + T cells. Immunology and Cell Biology, 2004, 82, 136-140.	2.3	3

#	Article	IF	CITATIONS
289	Q&A: H1N1 pandemic influenza - what's new?. BMC Biology, 2010, 8, 130.	3.8	3
290	Immunological Surveillance: T Cell Repertoire and the Biological Function of MHC Antigens. , 1983, , 91-109.		3
291	Historical Developments in Understanding the Function of Class I MHC Genes. , 1987, , 341-358.		3
292	THE ROLE OF MAJOR HISTOCOMPATIBILITY ANTIGENS IN CELL-MEDIATED IMMUNITY TO VIRUS INFECTIONS. , 1976, , 735-750.		3
293	Virus-Immune Cytotoxic T Cells are Sentized to by Virus Specifically Altered Structures Coded for in H-2K or H-2D: A Biological Role for Major Histocompatibility Antigens. , 1976, 66, 387-389.		3
294	Characteristics of the inflammatory process in murine lymphocytic choriomeningitis. Medical Microbiology and Immunology, 1986, 175, 193-195.	4.8	2
295	Cell-Mediated Immunity in Virus Infections of the Central Nervous System. Annals of the New York Academy of Sciences, 1988, 540, 228-239.	3.8	2
296	Persistence of the irradiated host component in thymocyte populations from bone marrow radiation chimeras infected with lymphocytic choriomeningitis virus. Cellular Immunology, 1989, 118, 482-490.	3.0	2
297	Binding of Monoclonal Antibodies and T Cell Effector Function <i>In Vivo</i> . Hybridoma, 1990, 9, 9-15.	0.6	2
298	Editorial overview Novel insights and new models in a time of rapid technological change. Current Opinion in Immunology, 1994, 6, 515-517.	5.5	2
299	Finding multiple needles in one immune haystack. Nature Methods, 2009, 6, 489-490.	19.0	2
300	Virus-Immune T Cells and Monoclonal Antibodies in the Mouse Influenza Model. Advances in Experimental Medicine and Biology, 1983, 162, 441-447.	1.6	2
301	Evasion of Host Immune Responses by Tumours and Viruses. Novartis Foundation Symposium, 1994, 187, 245-270.	1.1	2
302	The Immune Response to Influenza A Viruses. , 2011, , 173-197.		2
303	Influence of non-major histocompatibility complex differences on the severity of lymphocytic choriomeningitis. Journal of Neuroimmunology, 1989, 24, 55-60.	2.3	1
304	The Dual Specificity of Virus-Immune T Cells. , 1981, , 35-57.		1
305	VIRUS-HOST INTERACTIONS: A TELEOLOGICAL LOOK AT MHC RESTRICTION. , 1980, , 103-120.		1
306	Cell-Mediated Immunity to Viruses and Intracellular Bacteria. Clinics in Rheumatic Diseases, 1978, 4, 549-563.	1.3	1

#	Article	IF	CITATIONS
307	Effects of cyclophosphamide and cortisone on the virus-immune response characteristics of thymocytes and the early reconstitution profiles of P → F1 chimeras. Cellular Immunology, 1981, 65, 33-42.	3.0	0
308	U Thant Lecture: science, society and the challenge of the future. Notes and Records of the Royal Society, 2005, 59, 325-331.	0.3	0
309	Challenged by Complexity: My Twentieth Century in Immunology. Annual Review of Immunology, 2007, 25, 1-19.	21.8	0
310	Burnet, chick embryos, viruses, clones and quantitative biology. Immunology and Cell Biology, 2008, 86, 119-123.	2.3	0
311	The glittering prizes. Nature Immunology, 2010, 11, 875-878.	14.5	0
312	Interplay between chromatin remodeling and epigenetic changes during lineage-specific commitment to granzyme B expression. Journal of Immunology, 2010, 184, 1653-1653.	0.8	0
313	This Scientific Life. Viral Immunology, 2020, 33, 128-128.	1.3	0
314	COVID-19 and beyond. Round Table, 2021, 110, 171-172.	0.2	0
315	Foreword for Volume IV. , 2007, , xiii-xiv.		0
316	The immune response to influenza A viruses. , 2008, , 113-138.		0
317	Involvement of Self in the Interactions of Lymphocytes and Target Cells: Some Speculations on the Nature of MHC Restriction. , 1982, , 85-117.		0
318	Role of CD8+ αβ T Cells in Respiratory Infections Caused by Sendai Virus and Influenza Virus. , 1993, , 351-357.		0