Niccola Funel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4802846/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MicroRNA-21 in Pancreatic Cancer: Correlation with Clinical Outcome and Pharmacologic Aspects Underlying Its Role in the Modulation of Gemcitabine Activity. Cancer Research, 2010, 70, 4528-4538.	0.4	409
2	PTEN Expression and KRAS Mutations on Primary Tumors and Metastases in the Prediction of Benefit From Cetuximab Plus Irinotecan for Patients With Metastatic Colorectal Cancer. Journal of Clinical Oncology, 2009, 27, 2622-2629.	0.8	402
3	Transcription Analysis of Human Equilibrative Nucleoside Transporter-1 Predicts Survival in Pancreas Cancer Patients Treated with Gemcitabine. Cancer Research, 2006, 66, 3928-3935.	0.4	307
4	Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nature Genetics, 2014, 46, 994-1000.	9.4	294
5	Identification of MicroRNA-21 as a Biomarker for Chemoresistance and Clinical Outcome Following Adjuvant Therapy in Resectable Pancreatic Cancer. PLoS ONE, 2010, 5, e10630.	1.1	261
6	Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer. Nature Genetics, 2015, 47, 911-916.	9.4	224
7	Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nature Communications, 2018, 9, 556.	5.8	188
8	MicroRNAs Cooperatively Inhibit a Network of Tumor Suppressor Genes to Promote Pancreatic Tumor Growth and Progression. Gastroenterology, 2014, 146, 268-277.e18.	0.6	141
9	Italian consensus guidelines for the diagnostic work-up and follow-up of cystic pancreatic neoplasms. Digestive and Liver Disease, 2014, 46, 479-493.	0.4	108
10	TGF-β induces miR-100 and miR-125b but blocks let-7a through LIN28B controlling PDAC progression. Nature Communications, 2018, 9, 1845.	5.8	101
11	microRNAs with prognostic significance in pancreatic ductal adenocarcinoma: A meta-analysis. European Journal of Cancer, 2015, 51, 1389-1404.	1.3	94
12	Molecular Mechanisms Involved in the Synergistic Interaction of the EZH2 Inhibitor 3-Deazaneplanocin A with Gemcitabine in Pancreatic Cancer Cells. Molecular Cancer Therapeutics, 2012, 11, 1735-1746.	1.9	84
13	Crizotinib Inhibits Metabolic Inactivation of Gemcitabine in c-Met–driven Pancreatic Carcinoma. Cancer Research, 2013, 73, 6745-6756.	0.4	79
14	Dextran-Catechin Conjugate: A Potential Treatment Against the Pancreatic Ductal Adenocarcinoma. Pharmaceutical Research, 2012, 29, 2601-2614.	1.7	78
15	FOLFIRINOX and translational studies: Towards personalized therapy in pancreatic cancer. World Journal of Gastroenterology, 2016, 22, 6987.	1.4	68
16	High-Throughput MicroRNA (miRNAs) Arrays Unravel the Prognostic Role of MiR-211 in Pancreatic Cancer. PLoS ONE, 2012, 7, e49145.	1.1	67
17	Development of bioluminescent chick chorioallantoic membrane (CAM) models for primary pancreatic cancer cells: a platform for drug testing. Scientific Reports, 2017, 7, 44686.	1.6	66
18	Role of CYB5A in Pancreatic Cancer Prognosis and Autophagy Modulation. Journal of the National Cancer Institute, 2014, 106, dit346.	3.0	65

#	Article	IF	CITATIONS
19	Phospho-Akt overexpression is prognostic and can be used to tailor the synergistic interaction of Akt inhibitors with gemcitabine in pancreatic cancer. Journal of Hematology and Oncology, 2017, 10, 9.	6.9	65
20	The dichotomous role of the glycolytic metabolism pathway in cancer metastasis: Interplay with the complex tumor microenvironment and novel therapeutic strategies. Seminars in Cancer Biology, 2020, 60, 238-248.	4.3	65
21	Enhancement of the Antiproliferative Activity of Gemcitabine by Modulation of c-Met Pathway in Pancreatic Cancer. Current Pharmaceutical Design, 2013, 19, 940-950.	0.9	61
22	miR-211 Modulates Gemcitabine Activity Through Downregulation of Ribonucleotide Reductase and Inhibits the Invasive Behavior of Pancreatic Cancer Cells. Nucleosides, Nucleotides and Nucleic Acids, 2014, 33, 384-393.	0.4	58
23	<scp><i>TERT</i></scp> gene harbors multiple variants associated with pancreatic cancer susceptibility. International Journal of Cancer, 2015, 137, 2175-2183.	2.3	57
24	Role of c-MET Inhibitors in Overcoming Drug Resistance in Spheroid Models of Primary Human Pancreatic Cancer and Stellate Cells. Cancers, 2019, 11, 638.	1.7	57
25	Integrated molecular analysis to investigate the role of microRNAs in pancreatic tumour growth and progression. Lancet, The, 2015, 385, S37.	6.3	54
26	Robotic pancreatoduodenectomy with vascular resection. Langenbeck's Archives of Surgery, 2016, 401, 1111-1122.	0.8	52
27	Contrast enhancement pattern on multidetector CT predicts malignancy in pancreatic endocrine tumours. European Radiology, 2015, 25, 751-759.	2.3	51
28	Galectin-4 expression is associated with reduced lymph node metastasis and modulation of Wnt/β-catenin signalling in pancreatic adenocarcinoma. Oncotarget, 2014, 5, 5335-5349.	0.8	50
29	Imidazo[2,1-b] [1,3,4]thiadiazoles with antiproliferative activity against primary and gemcitabine-resistant pancreatic cancer cells. European Journal of Medicinal Chemistry, 2020, 189, 112088.	2.6	49
30	Plasma miR-181a-5p Downregulation Predicts Response and Improved Survival After FOLFIRINOX in Pancreatic Ductal Adenocarcinoma. Annals of Surgery, 2020, 271, 1137-1147.	2.1	47
31	Association between DNA-repair polymorphisms and survival in pancreatic cancer patients treated with combination chemotherapy. Pharmacogenomics, 2011, 12, 1641-1652.	0.6	45
32	Genetic susceptibility to pancreatic cancer and its functional characterisation: The PANcreatic Disease ReseArch (PANDoRA) consortium. Digestive and Liver Disease, 2013, 45, 95-99.	0.4	45
33	Interfacing polymeric scaffolds with primary pancreatic ductal adenocarcinoma cells to develop 3D cancer models. Biomatter, 2014, 4, e955386.	2.6	42
34	Splicing modulation as novel therapeutic strategy against diffuse malignant peritoneal mesothelioma. EBioMedicine, 2019, 39, 215-225.	2.7	41
35	Vascular Dysfunction in a Mouse Model of Rett Syndrome and Effects of Curcumin Treatment. PLoS ONE, 2013, 8, e64863.	1.1	41
36	3-(6-Phenylimidazo [2,1-b][1,3,4]thiadiazol-2-yl)-1H-Indole Derivatives as New Anticancer Agents in the Treatment of Pancreatic Ductal Adenocarcinoma. Molecules, 2020, 25, 329.	1.7	39

#	Article	IF	CITATIONS
37	A propensity score-matched analysis of robotic versus open pancreatoduodenectomy for pancreatic cancer based on margin status. Surgical Endoscopy and Other Interventional Techniques, 2019, 33, 234-242.	1.3	36
38	Genetic determinants of telomere length and risk of pancreatic cancer: A PANDoRA study. International Journal of Cancer, 2019, 144, 1275-1283.	2.3	36
39	A Model of a Zebrafish Avatar for Co-Clinical Trials. Cancers, 2020, 12, 677.	1.7	36
40	Microdissected pancreatic cancer proteomes reveal tumor heterogeneity and therapeutic targets. JCI Insight, 2020, 5, .	2.3	36
41	Proteomic analysis of gemcitabine-resistant pancreatic cancer cells reveals that microtubule-associated protein 2 upregulation associates with taxane treatment. Therapeutic Advances in Medical Oncology, 2019, 11, 175883591984123.	1.4	35
42	Laser microdissection and primary cell cultures improve pharmacogenetic analysis in pancreatic adenocarcinoma. Laboratory Investigation, 2008, 88, 773-784.	1.7	34
43	AKT1 and SELP Polymorphisms Predict the Risk of Developing Cachexia in Pancreatic Cancer Patients. PLoS ONE, 2014, 9, e108057.	1.1	34
44	Magnetic carbon nanotubes: a new tool for shepherding mesenchymal stem cells by magnetic fields. Nanomedicine, 2011, 6, 43-54.	1.7	32
45	Impact of hypoxia on chemoresistance of mesothelioma mediated by the proton-coupled folate transporter, and preclinical activity of new anti-LDH-A compounds. British Journal of Cancer, 2020, 123, 644-656.	2.9	29
46	Critical role of laser microdissection for genetic, epigenetic and proteomic analyses in pancreatic cancer. Expert Review of Molecular Diagnostics, 2011, 11, 695-701.	1.5	23
47	The emerging role of liquid biopsy in diagnosis, prognosis and treatment monitoring of pancreatic cancer. Pharmacogenomics, 2019, 20, 49-68.	0.6	23
48	Use of zebrafish embryos as avatar of patients with pancreatic cancer: A new xenotransplantation model towards personalized medicine. World Journal of Gastroenterology, 2020, 26, 2792-2809.	1.4	23
49	MicroRNA profiling of primary pulmonary enteric adenocarcinoma in members from the same family reveals some similarities to pancreatic adenocarcinoma—a step towards personalized therapy. Clinical Epigenetics, 2015, 7, 129.	1.8	22
50	New avenues in pancreatic cancer: exploiting microRNAs as predictive biomarkers and new approaches to target aberrant metabolism. Expert Review of Clinical Pharmacology, 2019, 12, 1081-1090.	1.3	22
51	Enhancement of the antiproliferative activity of gemcitabine by modulation of c-Met pathway in pancreatic cancer. Current Pharmaceutical Design, 2013, 19, 940-50.	0.9	22
52	Loss of 18q22.3 Involving the Carboxypeptidase of Glutamate-like Gene Is Associated with Poor Prognosis in Resected Pancreatic Cancer. Clinical Cancer Research, 2012, 18, 524-533.	3.2	21
53	Ukrain Affects Pancreas Cancer Cell Phenotype in vitro by Targeting MMP-9 and Intra-/Extracellular SPARC Expression. Pancreatology, 2010, 10, 545-552.	0.5	19
54	Prospective validation of microRNA signatures for detecting pancreatic malignant transformation in endoscopic-ultrasound guided fine-needle aspiration biopsies. Oncotarget, 2016, 7, 28556-28569.	0.8	19

#	Article	IF	CITATIONS
55	Synergistic Activity of the c-Met and Tubulin Inhibitor Tivantinib (ARQ197) with Pemetrexed in Mesothelioma Cells. Current Drug Targets, 2014, 15, 1331-1340.	1.0	19
56	Mutational Profiling of Kinases in Human Tumours of Pancreatic Origin Identifies Candidate Cancer Genes in Ductal and Ampulla of Vater Carcinomas. PLoS ONE, 2010, 5, e12653.	1.1	16
57	Common genetic variants associated with pancreatic adenocarcinoma may also modify risk of pancreatic neuroendocrine neoplasms. Carcinogenesis, 2018, 39, 360-367.	1.3	16
58	Unravelling the Diagnostic Dilemma: A MicroRNA Panel of Circulating MiR-16 and MiR-877 as A Diagnostic Classifier for Distal Bile Duct Tumors. Cancers, 2019, 11, 1181.	1.7	16
59	Common germline variants within the CDKN2A/2B region affect risk of pancreatic neuroendocrine tumors. Scientific Reports, 2016, 6, 39565.	1.6	15
60	SLC22A3 polymorphisms do not modify pancreatic cancer risk, but may influence overall patient survival. Scientific Reports, 2017, 7, 43812.	1.6	15
61	Association of genetic polymorphisms with survival of pancreatic ductal adenocarcinoma patients. Carcinogenesis, 2016, 37, 957-964.	1.3	14
62	Triticum vulgare extract exerts an anti-inflammatory action in two in vitro models of inflammation in microglial cells. PLoS ONE, 2018, 13, e0197493.	1.1	14
63	Loss of Heterozygosity Status of D9S105 Marker Is Associated with Downregulation of Krüppel-Like Factor 4 Expression in Pancreatic Ductal Adenocarcinoma and Pancreatic Intraepithelial Lesions. Pancreatology, 2011, 11, 30-42.	0.5	12
64	Decrease in phospho-PRAS40 plays a role in the synergy between erlotinib and crizotinib in an EGFR and cMET wild-type squamous non-small cell lung cancer cell line. Biochemical Pharmacology, 2019, 166, 128-138.	2.0	12
65	5'-nucleotidase cN-II emerges as a new predictive biomarker of response to gemcitabine/platinum combination chemotherapy in non-small cell lung cancer. Oncotarget, 2018, 9, 16437-16450.	0.8	12
66	Silver Nanoparticle-Coated Polyhydroxyalkanoate Based Electrospun Fibers for Wound Dressing Applications. Materials, 2021, 14, 4907.	1.3	11
67	Lipoprotein glomerulopathy: first report of 2 not consanguineous Italian men from the same town. Journal of Nephrology, 2011, 24, 381-385.	0.9	11
68	A polymorphism in the promoter is associated with EZH2 expression but not with outcome in advanced pancreatic cancer patients. Pharmacogenomics, 2014, 15, 609-618.	0.6	10
69	Evaluation of vascular infiltration in resected patients for pancreatic cancer: comparison among multidetector CT, intraoperative findings and histopathology. Abdominal Imaging, 2007, 32, 737-742.	2.0	9
70	Pancreatic serous cystoadenoma (CSA) showing increased tracer uptake at 68-GaDOTA-peptide Positron Emission Tomography (68Ga-DOTA-peptide PET-CT): a case report. BMC Surgery, 2020, 20, 331.	0.6	9
71	Triticum vulgare Extract Modulates Protein-Kinase B and Matrix Metalloproteinases 9 Protein Expression in BV-2 Cells: Bioactivity on Inflammatory Pathway Associated with Molecular Mechanism Wound Healing. Mediators of Inflammation, 2020, 2020, 1-13.	1.4	9
72	Anti-diabetic properties of a non-conventional radical scavenger, as compared to pioglitazone and exendin-4, in streptozotocin-nicotinamide diabetic mice. European Journal of Pharmacology, 2014, 729, 37-44.	1.7	8

#	Article	IF	CITATIONS
73	The role of miR-21 and miR-211 on MMP9 regulation in pancreatic ductal adenocarcinoma: cooperation in invasiveness behaviors?. Epigenomics, 2015, 7, 333-335.	1.0	8
74	Uridine Cytidine Kinase 2 as a Potential Biomarker for Treatment with RX-3117 in Pancreatic Cancer. Anticancer Research, 2019, 39, 3609-3614.	0.5	8
75	Zebrafish Patient-Derived Xenografts Identify Chemo-Response in Pancreatic Ductal Adenocarcinoma Patients. Cancers, 2021, 13, 4131.	1.7	8
76	Prognostic impact of conservative surgery for pancreatic IPMNs. Surgical Oncology, 2021, 38, 101582.	0.8	7
77	Multidetector CT in the evaluation of retroperitoneal fat tissue infiltration in ductal adenocarcinoma of the pancreatic head: correlation with histopathological findings. Abdominal Imaging, 2010, 35, 465-470.	2.0	6
78	The occurrence of prion protein in surgically resected pancreatic adenocarcinoma. Pancreatology, 2020, 20, 1218-1225.	0.5	6
79	Myoclonus epilepsy, retinitis pigmentosa, leukoencephalopathy and cerebral calcifications associated with a novel m.5513C>A mutation in the MT-TW gene. Biochemical and Biophysical Research Communications, 2018, 500, 158-162.	1.0	5
80	The odd case of a small and mucinous-like acinar cell cystoadenocarcinoma of the pancreas. Pancreatology, 2012, 12, 421-422.	0.5	4
81	Expression of SP7, RUNX1, DLX5, and CTNNB1 in Human Mesenchymal Stem Cells Cultured on Xenogeneic Bone Substitute as Compared With Machined Titanium. Implant Dentistry, 2014, Publish Ahead of Print, 407-15.	1.7	4
82	Genetic Polymorphisms Involved in Mitochondrial Metabolism and Pancreatic Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 2342-2345.	1.1	4
83	Robotic-assisted versus open left pancreatectomy for cystic tumours: A single-centre experience. Journal of Minimal Access Surgery, 2020, 16, 66.	0.4	4
84	Pancreatic Cancer. Gastroenterology Research and Practice, 2015, 2015, 1-2.	0.7	2
85	Pancreatoduodenectomy without Vascular Resection in Patients with Primary Resectable Adenocarcinoma and Unilateral Venous Contact: A Matched Case Study. Gastroenterology Research and Practice, 2018, 2018, 1-8.	0.7	2
86	Detailing the ultrastructure's increase of prion protein in pancreatic adenocarcinoma. World Journal of Gastroenterology, 2021, 27, 7324-7339.	1.4	2
87	Liquid biopsies to optimize therapeutic efficacy in unresponsive lung cancer patients. Expert Opinion on Drug Metabolism and Toxicology, 2018, 14, 761-763.	1.5	1
88	Advances in Primary Cell Culture of Pancreatic Cancer. , 2014, , 11-38.		0
89	The MEK1/2 Inhibitor Pimasertib Enhances Gemcitabine Efficacy—Letter. Clinical Cancer Research, 2016, 22, 2594-2594.	3.2	0